咨询与建议

限定检索结果

文献类型

  • 935 篇 期刊文献
  • 623 篇 会议
  • 11 篇 学位论文

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,418 篇 工学
    • 964 篇 计算机科学与技术...
    • 496 篇 电气工程
    • 183 篇 信息与通信工程
    • 136 篇 控制科学与工程
    • 131 篇 软件工程
    • 77 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 61 篇 机械工程
    • 51 篇 材料科学与工程(可...
    • 38 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 26 篇 测绘科学与技术
    • 25 篇 化学工程与技术
    • 23 篇 土木工程
    • 21 篇 动力工程及工程热...
    • 21 篇 环境科学与工程(可...
    • 18 篇 力学(可授工学、理...
    • 17 篇 交通运输工程
    • 13 篇 生物工程
  • 339 篇 理学
    • 129 篇 物理学
    • 96 篇 生物学
    • 61 篇 化学
    • 55 篇 数学
    • 38 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 249 篇 医学
    • 149 篇 临床医学
    • 65 篇 特种医学
    • 58 篇 基础医学(可授医学...
  • 113 篇 管理学
    • 91 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
  • 19 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 10 篇 文学
  • 3 篇 艺术学

主题

  • 1,569 篇 variational auto...
  • 265 篇 deep learning
  • 134 篇 anomaly detectio...
  • 93 篇 machine learning
  • 63 篇 generative adver...
  • 48 篇 training
  • 47 篇 generative model
  • 45 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 40 篇 neural networks
  • 39 篇 representation l...
  • 37 篇 generative adver...
  • 37 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 28 篇 deep generative ...
  • 28 篇 artificial intel...
  • 27 篇 semi-supervised ...
  • 26 篇 collaborative fi...
  • 26 篇 task analysis

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 li yan
  • 5 篇 xu shenheng

语言

  • 1,522 篇 英文
  • 44 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1569 条 记 录,以下是1551-1560 订阅
Weakly-Supervised Video Summarization Using variational Encoder-Decoder and Web Prior  1
收藏 引用
15th European Conference on Computer Vision (ECCV)
作者: Cai, Sijia Zuo, Wangmeng Davis, Larry S. Zhang, Lei Hong Kong Polytech Univ Dept Comp Kowloon Hong Kong Peoples R China DAMO Acad Alibaba Grp Hangzhou Peoples R China Harbin Inst Technol Sch Comp Sci & Technol Harbin Peoples R China Univ Maryland Dept Comp Sci College Pk MD 20742 USA
Video summarization is a challenging under-constrained problem because the underlying summary of a single video strongly depends on users' subjective understandings. Data-driven approaches, such as deep neural net... 详细信息
来源: 评论
Text Generation Based on Generative Adversarial Nets with Latent Variables  22nd
Text Generation Based on Generative Adversarial Nets with La...
收藏 引用
22nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
作者: Wang, Heng Qin, Zengchang Wan, Tao Beihang Univ Sch ASEE Intelligent Comp & Machine Learning Lab Beijing 100191 Peoples R China Beihang Univ Beijing Adv Innovat Ctr Biomed Engn Sch Biol Sci & Med Engn Beijing 100191 Peoples R China
In this paper, we propose a model using generative adversarial net (GAN) to generate realistic text. Instead of using standard GAN, we combine variational autoencoder (VAE) with generative adversarial net. The use of ... 详细信息
来源: 评论
Investigation of using disentangled and interpretable representations for one-shot cross-lingual voice conversion  19
Investigation of using disentangled and interpretable repres...
收藏 引用
19th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2018)
作者: Mohammadi, Seyed Hamidreza Kim, Taehwan ObEN Inc Pasadena CA 91103 USA
We study the problem of cross-lingual voice conversion in non-parallel speech corpora and one-shot learning setting. Most prior work require either parallel speech corpora or enough amount of training data from a targ... 详细信息
来源: 评论
UNSUPERVISED REPRESENTATION LEARNING OF SPEECH FOR DIALECT IDENTIFICATION
UNSUPERVISED REPRESENTATION LEARNING OF SPEECH FOR DIALECT I...
收藏 引用
IEEE Workshop on Spoken Language Technology (SLT)
作者: Shon, Suwon Hsu, Wei-Ning Glass, James MIT Comp Sci & Artificial Intelligence Lab 77 Massachusetts Ave Cambridge MA 02139 USA
In this paper, we explore the use of a factorized hierarchical variational autoencoder (FHVAE) model to learn an unsupervised latent representation for dialect identification (DID). An FHVAE can learn a latent space t... 详细信息
来源: 评论
Deep Incremental Learning for Efficient High-Fidelity Face Tracking
收藏 引用
ACM TRANSACTIONS ON GRAPHICS 2018年 第6期37卷 234-234页
作者: Wu, Chenglei Shiratori, Takaaki Sheikh, Yaser Facebook Real Labs Pittsburgh PA 15213 USA
In this paper, we present an incremental learning framework for efficient and accurate facial performance tracking. Our approach is to alternate the modeling step, which takes tracked meshes and texture maps to train ... 详细信息
来源: 评论
druGAN: An Advanced Generative Adversarial autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico
收藏 引用
MOLECULAR PHARMACEUTICS 2017年 第9期14卷 3098-3104页
作者: Kadurin, Artur Nikolenko, Sergey Khrabrov, Kuzma Aliper, Alex Zhavoronkov, Alex Johns Hopkins Univ Eastern Emerging Technol Ctr Insilico Med Inc Pharmaceut Artificial Intelligence Dept Baltimore MD 21218 USA Natl Res Univ Higher Sch Econ St Petersburg 190008 Russia Steklov Math Inst St Petersburg St Petersburg 191023 Russia Mail Ru Grp Ltd Search Dept Moscow 125167 Russia Biogerontol Res Fdn Trevissome Pk Truro TR4 8UN England Moscow Inst Phys & Technol Dolgoprudnyi 141701 Russia Kazan Fed Univ Kazan 420008 Republic Of Tat Russia
Deep generative adversarial networks (GANs) are the emerging technology in drug discovery and biomarker development. In our recent work, we demonstrated a proof-of-concept of implementing deep generative adversarial a... 详细信息
来源: 评论
Automatic analysis of faulty low voltage network asset using deep neural networks
收藏 引用
JOURNAL OF ENGINEERING-JOE 2018年 第15期2018卷 851-855页
作者: Mastroleo, Marcello Ugolotti, Roberto Mussi, Luca Vicari, Emilio Sassi, Federico Sciocchetti, Francesco Beasant, Bob McIlroy, Colin Camlin Italy Str Budellungo 2 Parma Italy Camlin Technol 31 Ferguson Dr Lisburn North Ireland
Electrical distribution network is constantly ageing worldwide. Therefore, probability of cable faults is increasing over time. Fast recovering of damaged networks is of vital importance and a quick and automatic iden... 详细信息
来源: 评论
Modeling and Transforming Speech using variational autoencoders  17
Modeling and Transforming Speech using Variational Autoencod...
收藏 引用
17th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2016)
作者: Blaauw, Merlijn Bonada, Jordi Univ Pompeu Fabra Mus Technol Grp Barcelona Spain
Latent generative models can learn higher-level underlying factors from complex data in an unsupervised manner. Such models can be used in a wide range of speech processing applications, including synthesis, transform... 详细信息
来源: 评论
VAE-SPACE: DEEP GENERATIVE MODEL OF VOICE FUNDAMENTAL FREQUENCY CONTOURS
VAE-SPACE: DEEP GENERATIVE MODEL OF VOICE FUNDAMENTAL FREQUE...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Kou Tanaka Hirokazu Kameoka Kazuho Morikawa NTT Communication Science Laboratories NTT Corporation Japan Graduate School of informatics Nagoya University Japan
Modeling the speech generation process can provide flexible and interpretable ways to generate intended synthetic speech. In this paper, we present a deep generative model of fundamental frequency (F_0) contours of no... 详细信息
来源: 评论
PLAYING TECHNIQUE CLASSIFICATION BASED ON DEEP COLLABORATIVE LEARNING OF variational AUTO-ENCODER AND GAUSSIAN PROCESS
PLAYING TECHNIQUE CLASSIFICATION BASED ON DEEP COLLABORATIVE...
收藏 引用
IEEE International Conference on Multimedia and Expo
作者: Sih-Huei Chen Yuan-Shan Lee Min-Che Hsieh Jia-Ching Wang Dept. of Computer Science and Information Engineering National Central University Taiwan
Modeling musical timbre is critical for various music information retrieval (MIR) tasks. This work addresses the task of classifying playing techniques, which involves extremely subtle variations of timbre among diffe... 详细信息
来源: 评论