咨询与建议

限定检索结果

文献类型

  • 909 篇 期刊文献
  • 618 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,539 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,387 篇 工学
    • 946 篇 计算机科学与技术...
    • 488 篇 电气工程
    • 177 篇 信息与通信工程
    • 129 篇 控制科学与工程
    • 128 篇 软件工程
    • 75 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 59 篇 机械工程
    • 48 篇 材料科学与工程(可...
    • 36 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 25 篇 测绘科学与技术
    • 24 篇 化学工程与技术
    • 21 篇 土木工程
    • 21 篇 环境科学与工程(可...
    • 19 篇 动力工程及工程热...
    • 17 篇 力学(可授工学、理...
    • 16 篇 交通运输工程
    • 13 篇 生物工程
  • 328 篇 理学
    • 125 篇 物理学
    • 95 篇 生物学
    • 59 篇 化学
    • 53 篇 数学
    • 35 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 244 篇 医学
    • 146 篇 临床医学
    • 61 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 109 篇 管理学
    • 88 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,539 篇 variational auto...
  • 260 篇 deep learning
  • 131 篇 anomaly detectio...
  • 93 篇 machine learning
  • 59 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 27 篇 semi-supervised ...
  • 27 篇 artificial intel...
  • 26 篇 task analysis
  • 26 篇 deep generative ...
  • 25 篇 collaborative fi...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,487 篇 英文
  • 38 篇 其他
  • 3 篇 中文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 意大利文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1539 条 记 录,以下是551-560 订阅
排序:
Analog ensemble data assimilation and a method for constructing analogs with variational autoencoders
收藏 引用
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY 2021年 第734期147卷 139-149页
作者: Grooms, Ian Univ Colorado Dept Appl Math Boulder CO 80309 USA
It is proposed to use analogs of the forecast mean to generate an ensemble of perturbations for use in ensemble optimal interpolation (EnOI) or ensemble variational (EnVar) methods. A new method of constructing analog... 详细信息
来源: 评论
Learning Physically Meaningful Representations of Energy Systems with variational autoencoders  27
Learning Physically Meaningful Representations of Energy Sys...
收藏 引用
IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA)
作者: Multaheb, Samim Bauer, Fabian Bretschneider, Peter Niggemann, Oliver Helmut Schmidt Univ Inst Automat Technol Hamburg Germany Ilmenau Univ Technol Inst Elect Power & Control Engn Ilmenau Germany
Given the growing number of volatile energy producers and consumers and the limitations of traditional static load prediction models, we have analyzed the ability of neural networks to predict the loads of an electric... 详细信息
来源: 评论
Rolling Bearing Fault Diagnosis Based on Multi-Modal variational autoencoders  3
Rolling Bearing Fault Diagnosis Based on Multi-Modal Variati...
收藏 引用
3rd International Conference on Sensing, Measurement and Data Analytics in the Era of Artificial Intelligence, ICSMD 2022
作者: Xiong, Manjun Wu, Yifan Li, Chuan Yang, Zhe School of Management Science and Engineering Chongqing Technology and Business University Chongqing400067 China Chongqing Technology and Business University Research Center of System Health Maintenance Chongqing400067 China School of Mechanical Engineering Dongguan University of Technology and Business University Dongguan523808 China
With the development of Industry 4.0, more and more attention has been paid to system intelligent maintenance by various industries, among which rolling bearing is an indispensable and most important component. Existi... 详细信息
来源: 评论
Unsupervised deep learning approach for structural anomaly detection using probabilistic features
收藏 引用
STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL 2025年 第1期24卷 3-33页
作者: Wan, Hua-Ping Zhu, Yi-Kai Luo, Yaozhi Todd, Michael D. Zhejiang Univ Coll Civil Engn & Architecture 866 Yuhangtang Rd Hangzhou 310058 Peoples R China Univ Calif San Diego Dept Struct Engn La Jolla CA USA
Civil structures may deteriorate during their service life due to degradation or damage imposed by natural hazards such as earthquakes, wind, and impact. Structural performance anomaly detection is essential to provid... 详细信息
来源: 评论
Physically reliable 3D styled shape generation via structure-aware topology optimization in unified latent space
收藏 引用
COMPUTER-AIDED DESIGN 2025年 183卷
作者: Ijaz, Haroon Wang, Xuwei Chen, Wei Lin, Hai Li, Ming Zhejiang Univ State Key Lab CAD&CG Hangzhou 310027 Peoples R China
We propose a novel approach to structure-aware topology optimization (SATO) to generate physically plausible multi-component structures with diverse stylistic variations. Traditional TO methods often operate within a ... 详细信息
来源: 评论
Learning and Predicting Photonic Responses of Plasmonic Nanoparticle Assemblies via Dual variational autoencoders
收藏 引用
SMALL 2023年 第25期19卷 2205893-2205893页
作者: Yaman, Muammer Y. Kalinin, Sergei V. Guye, Kathryn N. Ginger, David S. Ziatdinov, Maxim Univ Washington Dept Chem Seattle WA 98195 USA Univ Tennessee Dept Mat Sci & Engn Knoxville TN 37996 USA Pacific Northwest Natl Lab Phys Sci Div Phys & Computat Sci Directorate Richland WA 99354 USA Oak Ridge Natl Lab Ctr Nanophase Mat Sci Oak Ridge TN 37831 USA Oak Ridge Natl Lab Computat Sci & Engn Div Oak Ridge TN 37831 USA
The application of machine learning is demonstrated for rapid and accurate extraction of plasmonic particles cluster geometries from hyperspectral image data via a dual variational autoencoder (dual-VAE). In this appr... 详细信息
来源: 评论
mcVAE: disentangling by mean constraint
收藏 引用
VISUAL COMPUTER 2024年 第2期40卷 1229-1243页
作者: Hu, Ming-fei Liu, Ze-yu Liu, Jian-wei China Univ Petr Dept Automat Coll Informat Sci & Engn 260 Mailbox Beijing 102249 Peoples R China
Disentanglement tends to automatically learn and separate the interpretable factors of variation hidden in the data. Disentangled representations are more transferable and robust for the chosen model, and they are com... 详细信息
来源: 评论
Rethinking Robust Multivariate Time Series Anomaly Detection: A Hierarchical Spatio-Temporal variational Perspective
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第12期36卷 9136-9149页
作者: Zhang, Xiao Xu, Shuqing Chen, Huashan Chen, Zekai Zhuang, Fuzhen Xiong, Hui Yu, Dongxiao Shandong Univ Sch Comp Sci & Technol Qingdao 266237 Peoples R China Chinese Acad Sci Inst Informat Engn Beijing 100093 Peoples R China Amazon Seattle WA 98109 USA Beihang Univ Inst Artificial Intelligence Sch Comp Sci SKLSDE Beijing 100191 Peoples R China Hong Kong Univ Sci & Technol Thrust Artificial Intelligence Guangzhou 511458 Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
The robust multivariate time series anomaly detection can facilitate intelligent decisions and timely maintenance in various kinds of monitor systems. However, the robustness is highly restricted by the stochasticity ... 详细信息
来源: 评论
Parametric model order reduction by machine learning for fluid-structure interaction analysis
收藏 引用
ENGINEERING WITH COMPUTERS 2024年 第1期40卷 45-60页
作者: Lee, SiHun Jang, Kijoo Lee, Sangmin Cho, Haeseong Shin, SangJoon Seoul Natl Univ Dept Aerosp Engn Seoul 08226 South Korea Jeonbuk Natl Univ Dept Aerosp Engn Jeonju 54896 South Korea Seoul Natl Univ Inst Adv Aerosp Technol Seoul 08226 South Korea
An improved nonintrusive parametric model order reduction (pMOR) approach is proposed for the flow field interpolation regarding fluid-structure interaction (FSI) objects. Flow field computation using computational fl... 详细信息
来源: 评论
Low frequency residential load monitoring via feature fusion and deep learning
收藏 引用
ELECTRIC POWER SYSTEMS RESEARCH 2025年 238卷
作者: Ji, Tianyao Chen, Jiawei Zhang, Luliang Lai, Hongfeng Wang, Jian Wu, Qinghua South China Univ Technol Sch Elect Power Engn Guangzhou 510640 Peoples R China
Non-intrusive load monitoring (NILM) is a technique used to disaggregate the total power signal into individual appliance power signals, which plays an important role in smart grid. Recently, deep learning is widely u... 详细信息
来源: 评论