咨询与建议

限定检索结果

文献类型

  • 923 篇 期刊文献
  • 619 篇 会议
  • 12 篇 学位论文

馆藏范围

  • 1,554 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,400 篇 工学
    • 949 篇 计算机科学与技术...
    • 492 篇 电气工程
    • 179 篇 信息与通信工程
    • 131 篇 控制科学与工程
    • 129 篇 软件工程
    • 76 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 60 篇 机械工程
    • 49 篇 材料科学与工程(可...
    • 37 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 27 篇 化学工程与技术
    • 26 篇 测绘科学与技术
    • 22 篇 动力工程及工程热...
    • 22 篇 土木工程
    • 22 篇 环境科学与工程(可...
    • 18 篇 力学(可授工学、理...
    • 17 篇 交通运输工程
    • 14 篇 生物工程
  • 334 篇 理学
    • 126 篇 物理学
    • 95 篇 生物学
    • 62 篇 化学
    • 53 篇 数学
    • 37 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 246 篇 医学
    • 148 篇 临床医学
    • 62 篇 特种医学
    • 56 篇 基础医学(可授医学...
  • 110 篇 管理学
    • 89 篇 管理科学与工程(可...
    • 15 篇 图书情报与档案管...
  • 18 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 9 篇 文学
  • 3 篇 艺术学

主题

  • 1,554 篇 variational auto...
  • 262 篇 deep learning
  • 133 篇 anomaly detectio...
  • 93 篇 machine learning
  • 61 篇 generative adver...
  • 47 篇 generative model
  • 46 篇 training
  • 43 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 39 篇 neural networks
  • 37 篇 representation l...
  • 36 篇 generative adver...
  • 36 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 28 篇 artificial intel...
  • 27 篇 semi-supervised ...
  • 26 篇 collaborative fi...
  • 26 篇 task analysis
  • 26 篇 deep generative ...

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 9 篇 tahan antoine
  • 9 篇 zemouri ryad
  • 8 篇 chen junghui
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 yoshii kazuyoshi
  • 5 篇 li yan

语言

  • 1,498 篇 英文
  • 42 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1554 条 记 录,以下是821-830 订阅
排序:
Unsupervised SAR Representation Learning Improves Classification Performance  34
Unsupervised SAR Representation Learning Improves Classifica...
收藏 引用
Conference on Automatic Target Recognition XXXIV
作者: Vaughn, Nolan Sullivan, Bo Jaskie, Kristen Prime Solut Grp Inc Goodyear AZ 85338 USA
We compare the effectiveness of using a trained-from-scratch, unsupervised deep generative variational autoencoder (VAE) model as a solution to generic representation learning problems for Synthetic Aperture Radar (SA... 详细信息
来源: 评论
PRVAE-VC2: Non-Parallel Voice Conversion by Distillation of Speech Representations  25
PRVAE-VC2: Non-Parallel Voice Conversion by Distillation of ...
收藏 引用
25th Interspeech Conference
作者: Tanaka, Kou Kameoka, Hirokazu Kaneko, Takuhiro Kondo, Yuto NTT Corp Tokyo Japan
This paper describes a knowledge distillation approach to non-parallel many-to-many voice conversion (VC) using self-supervised speech representation techniques: perturbation-resistant variational autoencoder (PRVAE) ... 详细信息
来源: 评论
A HYBRID SURROGATE MODELING APPROACH FOR DATA REDUCTION AND DESIGN SPACE EXPLORATION OF TURBINE BLADES  69
A HYBRID SURROGATE MODELING APPROACH FOR DATA REDUCTION AND ...
收藏 引用
69th ASME Turbomachinery Technical Conference and Exposition (ASME Turbo Expo) (GT)
作者: Ali, Sazeed S. Yadav, Vikas S. Nouri, Behnam Ghani, Abdulla Siemens Energy Global GmbH & Co KG Berlin Germany TU Berlin Chair Data Anal & Modeling Turbulent Flows Berlin Germany
The conventional iterative geometry optimization process for turbine blades using computer aided engineering (CAE) simulations is both cost and time consuming and has limitations in terms of computational requirements... 详细信息
来源: 评论
Deep FAVIB: Deep Learning-Based Forward-Aware Quantization via Information Bottleneck Method  59
Deep FAVIB: Deep Learning-Based Forward-Aware Quantization v...
收藏 引用
59th Annual IEEE International Conference on Communications (IEEE ICC)
作者: Hummert, Matthias Hassanpour, Shayan Wuebben, Dirk Dekorsy, Armin Univ Bremen Dept Commun Engn D-28359 Bremen Germany
We focus on a (generic) joint source-channel coding problem, appearing in a broad variety of real-world application. Explicitly, a noisy observation from a user/source signal should be compressed, ahead of getting for... 详细信息
来源: 评论
Modeling variational Anchoring Effect for Recommender Systems  2
Modeling Variational Anchoring Effect for Recommender System...
收藏 引用
2nd IEEE Conference on Artificial Intelligence (CAI)
作者: Xiao, Yudi Zhang, Yingyi Li, Xianneng Dalian Univ Technol Sch Econ & Management Inst Adv Intelligence Dalian Peoples R China
Users generally have a tendency to rely on numerical information of recommendations presented on the web page when judging the recommended items, which refers to a classic psychological concept, anchoring effect. Lear... 详细信息
来源: 评论
The Temporal Random Scene Generation Method Considering Source-Load Correlation  7
The Temporal Random Scene Generation Method Considering Sour...
收藏 引用
7th International Conference on Energy, Electrical and Power Engineering (CEEPE)
作者: Zhou, Hao Hong, Lucheng Liu, Hui Gu, Jie Zhu, Zihan Ren, Xiaofeng Southeast Univ Jiangsu Prov Key Lab Smart Grid Technol & Equipme Nanjing Peoples R China Jiangsu Elect Power Supply Co Xuzhou Elect Power Supply Branch Off Xuzhou Jiangsu Peoples R China
With the continuous increase in the penetration rate of renewable distribution generation (RDG) and the integration of various flexible controllable loads in new distribution systems, the uncertainty from both generat... 详细信息
来源: 评论
Unsupervised Anomaly Detection in 3D Brain FDG PET: A Benchmark of 17 VAE-Based Approaches  3rd
Unsupervised Anomaly Detection in 3D Brain FDG PET: A Benchm...
收藏 引用
3rd Workshop on Deep Generative Models for Medical Image Computing and Computer Assisted Intervention (DGM4MICCAI) at the 26th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI)
作者: Hassanaly, Ravi Brianceau, Camille Colliot, Olivier Burgos, Ninon Sorbonne Univ Hop Pitie Salpetriere AP HP Inst CerveauParis Brain InstICMCNRSInsermInr F-75013 Paris France
The use of deep generative models for unsupervised anomaly detection is an area of research that has gained interest in recent years in the field of medical imaging. Among all the existing models, the variational auto... 详细信息
来源: 评论
Can I Trust My Anomaly Detection System? A Case Study Based on Explainable AI  2nd
Can I Trust My Anomaly Detection System? A Case Study Based ...
收藏 引用
2nd World Conference on Explainable Artificial Intelligence (xAI)
作者: Rashid, Muhammad Amparorel, Elvio Ferrari, Enrico Verda, Damiano Univ Torino Comp Sci Dept Cso Svizzera 185 I-10149 Turin Italy Rulex Innovat Labs Via Felice Romani 9 I-16122 Genoa Italy
Generative models based on variational autoencoders are a popular technique for detecting anomalies in images in a semi-supervised context. A common approach employs the anomaly score to detect the presence of anomali... 详细信息
来源: 评论
Action Conditioned Attention Encoder-Decoder and Discriminator for Human Motion Generation  1
收藏 引用
5th International Conference on Deep Learning Theory and Applications (DeLTA)
作者: Bandi, Chaitanya Thomas, Ulrike Tech Univ Chemnitz Chemnitz Germany
We present a CVAE-GAN-based architecture for human motion generation with an action-conditioned variational autoencoder and a generative discriminator. In this work, we focus on generating more accurate actions perfor... 详细信息
来源: 评论
Compositionality and Generalization in Emergent Communication using Metropolis-Hastings Naming Game
Compositionality and Generalization in Emergent Communicatio...
收藏 引用
IEEE International Conference on Development and Learning (ICDL)
作者: Le Hoang, Nguyen Matsui, Yuta Hagiwara, Yoshinobu Ritsumeikan Univ Grad Sch Info Sci & Engn Osaka Japan Ritsumeikan Univ Res Org Sci & Tech Osaka Shiga Japan
This study investigates the emergence of compositionality and generalization within Emergent Communication (EmCom) systems, focusing on emergent language using the Metropolis-Hastings naming game (MHNG). Although the ... 详细信息
来源: 评论