咨询与建议

限定检索结果

文献类型

  • 935 篇 期刊文献
  • 623 篇 会议
  • 11 篇 学位论文

馆藏范围

  • 1,569 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,418 篇 工学
    • 964 篇 计算机科学与技术...
    • 496 篇 电气工程
    • 183 篇 信息与通信工程
    • 136 篇 控制科学与工程
    • 131 篇 软件工程
    • 77 篇 生物医学工程(可授...
    • 73 篇 仪器科学与技术
    • 61 篇 机械工程
    • 51 篇 材料科学与工程(可...
    • 38 篇 电子科学与技术(可...
    • 32 篇 石油与天然气工程
    • 26 篇 测绘科学与技术
    • 25 篇 化学工程与技术
    • 23 篇 土木工程
    • 21 篇 动力工程及工程热...
    • 21 篇 环境科学与工程(可...
    • 18 篇 力学(可授工学、理...
    • 17 篇 交通运输工程
    • 13 篇 生物工程
  • 339 篇 理学
    • 129 篇 物理学
    • 96 篇 生物学
    • 61 篇 化学
    • 55 篇 数学
    • 38 篇 地球物理学
    • 20 篇 统计学(可授理学、...
  • 249 篇 医学
    • 149 篇 临床医学
    • 65 篇 特种医学
    • 58 篇 基础医学(可授医学...
  • 113 篇 管理学
    • 91 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
  • 19 篇 农学
  • 12 篇 经济学
  • 10 篇 法学
  • 10 篇 教育学
  • 10 篇 文学
  • 3 篇 艺术学

主题

  • 1,569 篇 variational auto...
  • 265 篇 deep learning
  • 134 篇 anomaly detectio...
  • 93 篇 machine learning
  • 63 篇 generative adver...
  • 48 篇 training
  • 47 篇 generative model
  • 45 篇 feature extracti...
  • 42 篇 unsupervised lea...
  • 40 篇 neural networks
  • 39 篇 representation l...
  • 37 篇 generative adver...
  • 37 篇 data augmentatio...
  • 34 篇 convolutional ne...
  • 33 篇 data models
  • 28 篇 deep generative ...
  • 28 篇 artificial intel...
  • 27 篇 semi-supervised ...
  • 26 篇 collaborative fi...
  • 26 篇 task analysis

机构

  • 10 篇 natl chiao tung ...
  • 6 篇 ucl england
  • 6 篇 shenzhen univ co...
  • 6 篇 shanghai univ sc...
  • 5 篇 nanyang technol ...
  • 5 篇 zhejiang lab peo...
  • 5 篇 xiamen univ sch ...
  • 5 篇 chung yuan chris...
  • 4 篇 mit comp sci & a...
  • 4 篇 univ chinese aca...
  • 4 篇 beijing jiaotong...
  • 4 篇 acad sinica res ...
  • 4 篇 acad sinica taiw...
  • 4 篇 oak ridge natl l...
  • 4 篇 northwestern pol...
  • 4 篇 ecole technol su...
  • 4 篇 chongqing univ p...
  • 4 篇 tsinghua univ de...
  • 4 篇 univ elect sci &...
  • 4 篇 zhejiang univ st...

作者

  • 12 篇 chien jen-tzung
  • 8 篇 tahan antoine
  • 8 篇 chen junghui
  • 8 篇 zemouri ryad
  • 7 篇 yang fan
  • 7 篇 utschick wolfgan...
  • 7 篇 zhang hao
  • 6 篇 tsao yu
  • 6 篇 baur michael
  • 6 篇 slavic giulia
  • 6 篇 wang hsin-min
  • 6 篇 regazzoni carlo
  • 6 篇 marcenaro lucio
  • 5 篇 guo rui
  • 5 篇 li maokun
  • 5 篇 hsu wei-ning
  • 5 篇 glass james
  • 5 篇 liu xin
  • 5 篇 li yan
  • 5 篇 xu shenheng

语言

  • 1,522 篇 英文
  • 44 篇 其他
  • 2 篇 中文
  • 1 篇 朝鲜文
  • 1 篇 土耳其文
检索条件"主题词=Variational autoencoder"
1569 条 记 录,以下是981-990 订阅
Representative Data Selection for Efficient Medical Incremental Learning
Representative Data Selection for Efficient Medical Incremen...
收藏 引用
45th Annual International Conference of the IEEE-Engineering-in-Medicine-and-Biology-Society (EMBC)
作者: Wei, Bo-Quan Chen, Jen-Jee Tseng, Yu-Chee Kuo, Po-Tsun Paul Natl Yang Ming Chiao Tung Univ NYCU Coll Artificial Intelligence Hsinchu Taiwan Acad Sinica Taipei Taiwan Kaohsiung Med Univ Kaohsiung Taiwan Advantech Co AI Res Ctr Taipei Taiwan NYCU Coll Artificial Intelligence Hsinchu Taiwan
To train a deep neural network relies on a large amount of annotated data. In special scenarios like industry defect detection and medical imaging, it is hard to collect sufficient labeled data all at once. Newly anno... 详细信息
来源: 评论
Interpretable Mechanistic Representations for Meal-level Glycemic Control in the Wild  3
Interpretable Mechanistic Representations for Meal-level Gly...
收藏 引用
3rd Machine Learning for Health Symposium
作者: Wang, Ke Alexander Fox, Emily B. Stanford Univ Stanford CA 94305 USA CZ Biohub San Francisco CA USA
Diabetes encompasses a complex landscape of glycemic control that varies widely among individuals. However, current methods do not faithfully capture this variability at the meal level. On the one hand, expert-crafted... 详细信息
来源: 评论
A Deep Generative Recommendation Method for Unbiased Learning from Implicit Feedback  23
A Deep Generative Recommendation Method for Unbiased Learnin...
收藏 引用
13th ACM SIGIR International Conference on the Theory of Information Retrieval (ICTIR)
作者: Gupta, Shashank Oosterhuis, Harrie de Rijke, Maarten Univ Amsterdam Amsterdam Netherlands Radboud Univ Nijmegen Nijmegen Netherlands
variational autoencoders (VAEs) are the state-of-the-art model for recommendation with implicit feedback signals. Unfortunately, implicit feedback suffers from selection bias, e.g., popularity bias, position bias, etc... 详细信息
来源: 评论
Disentangled Representation with Causal Constraints for Counterfactual Fairness  27th
Disentangled Representation with Causal Constraints for Coun...
收藏 引用
27th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
作者: Xu, Ziqi Liu, Jixue Cheng, Debo Li, Jiuyong Liu, Lin Wang, Ke Univ South Australia Adelaide SA Australia Simon Fraser Univ Burnaby BC Canada
Much research has been devoted to the problem of learning fair representations;however, they do not explicitly state the relationship between latent representations. In many real-world applications, there may be causa... 详细信息
来源: 评论
Personalization Disentanglement for Federated Learning
Personalization Disentanglement for Federated Learning
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Yan, Peng Long, Guodong Univ Technol Sydney Fac Engn & IT Sydney NSW Australia
Personalized federated learning (PFL) jointly trains a variety of local models through balancing between knowledge sharing across clients and model personalization per client. This paper addresses PFL via explicit dis... 详细信息
来源: 评论
Interpretable Style Transfer for Text-to-Speech with ControlVAE and Diffusion Bridge  24
Interpretable Style Transfer for Text-to-Speech with Control...
收藏 引用
Interspeech Conference
作者: Guan, Wenhao Li, Tao Li, Yishuang Huang, Hukai Hong, Qingyang Li, Lin Xiamen Univ Sch Informat Xiamen Peoples R China Xiamen Univ Inst Artificial Intelligence Xiamen Peoples R China Xiamen Univ Sch Elect Sci & Engn Xiamen Peoples R China
With the demand for autonomous control and personalized speech generation, the style control and transfer in Text-to-Speech (TTS) is becoming more and more important. In this paper, we propose a new TTS system that ca... 详细信息
来源: 评论
Improving Neural Topic Models with Wasserstein Knowledge Distillation  1
收藏 引用
45th European Conference on Information Retrieval (ECIR)
作者: Adhya, Suman Sanyal, Debarshi Kumar Indian Assoc Cultivat Sci Jadavpur 700032 India
Topic modeling is a dominant method for exploring document collections on the web and in digital libraries. Recent approaches to topic modeling use pretrained contextualized language models and variational autoencoder... 详细信息
来源: 评论
Better Integrating Vision and Semantics for Improving Few-shot Classification  23
Better Integrating Vision and Semantics for Improving Few-sh...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Li, Zhuoling Wang, Yong Cent South Univ Changsha Hunan Peoples R China
Some recent methods address few-shot classification by integrating visual and semantic prototypes. However, they usually ignore the difference in feature structure between the visual and semantic modalities, which lea... 详细信息
来源: 评论
scVAEBGM: Clustering Analysis of Single-Cell ATAC-seq Data Using a Deep Generative Model
收藏 引用
INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES 2022年 第4期14卷 917-928页
作者: Duan, Hongyu Li, Feng Shang, Junliang Liu, Jinxing Li, Yan Liu, Xikui Qufu Normal Univ Sch Comp Sci Rizhao 276826 Peoples R China Shandong Univ Sci & Technol Dept Elect Engn & Informat Technol Jinan 250031 Shandong Peoples R China
A surge in research has occurred because of current developments in single-cell technologies. Above all, single-cell Assay for Transposase-Accessible Chromatin with high throughput sequencing (scATAC-seq) is a popular... 详细信息
来源: 评论
Bayesian Multi-Temporal-Difference Learning
收藏 引用
APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING 2022年 第1期11卷
作者: Chien, Jen-Tzung Chiu, Yi-Chung Natl Yang Ming Chiao Tung Univ Inst Elect & Comp Engn Hsinchu Taiwan
This paper presents a new sequential learning via a planning strategy where the future samples are predicted by reflecting the past experiences. Such a strategy is appealing to implement an intelligent machine which f... 详细信息
来源: 评论