咨询与建议

限定检索结果

文献类型

  • 28 篇 期刊文献
  • 8 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 37 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 30 篇 工学
    • 24 篇 计算机科学与技术...
    • 11 篇 电气工程
    • 6 篇 信息与通信工程
    • 2 篇 机械工程
    • 2 篇 生物工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 土木工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 13 篇 理学
    • 11 篇 生物学
    • 2 篇 数学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
  • 6 篇 农学
  • 5 篇 医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 药学(可授医学、理...
  • 4 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 2 篇 图书情报与档案管...

主题

  • 37 篇 variational grap...
  • 6 篇 deep learning
  • 2 篇 graph neural net...
  • 2 篇 porous metamater...
  • 2 篇 community detect...
  • 2 篇 graph neural net...
  • 2 篇 xgboost
  • 2 篇 predictive model...
  • 2 篇 spatial clusteri...
  • 2 篇 microbe-disease ...
  • 2 篇 feature extracti...
  • 2 篇 gene expression
  • 2 篇 link prediction
  • 2 篇 imputation
  • 1 篇 internet of thin...
  • 1 篇 generative desig...
  • 1 篇 covid-19
  • 1 篇 maximize mutual ...
  • 1 篇 cell-cell commun...
  • 1 篇 multivariate tim...

机构

  • 2 篇 univ connecticut...
  • 2 篇 imec kapeldreef ...
  • 2 篇 northwestern pol...
  • 2 篇 xidian univ sch ...
  • 2 篇 south china norm...
  • 1 篇 xiangtan univ sc...
  • 1 篇 state grid beiji...
  • 1 篇 tsinghua univ ct...
  • 1 篇 vrije univ bruss...
  • 1 篇 birla inst thchn...
  • 1 篇 hunan univ techn...
  • 1 篇 vrije univ bruss...
  • 1 篇 univ manitoba de...
  • 1 篇 univ saskatchewa...
  • 1 篇 sun yat sen univ...
  • 1 篇 shandong acad sc...
  • 1 篇 yale university
  • 1 篇 school of inform...
  • 1 篇 amirkabir univ t...
  • 1 篇 lund university

作者

  • 2 篇 xu hongyi
  • 2 篇 guo qianjin
  • 2 篇 lall snehalika
  • 2 篇 kleinsteuber mar...
  • 2 篇 zhang zhiwei
  • 2 篇 anwaar muhammad ...
  • 2 篇 wang mengqiu
  • 2 篇 zhu huan
  • 2 篇 wang zihan
  • 2 篇 dai ruoyan
  • 2 篇 deligiannis niko...
  • 2 篇 ray sumanta
  • 2 篇 hao hongxia
  • 2 篇 wang zhenghui
  • 2 篇 han kaitai
  • 2 篇 lei lixin
  • 2 篇 khanghah kiarash...
  • 2 篇 bandyopadhyay sa...
  • 2 篇 shi chaojing
  • 2 篇 yu liang

语言

  • 36 篇 英文
检索条件"主题词=Variational graph autoEncoder"
37 条 记 录,以下是11-20 订阅
Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding Wasserstein distance
收藏 引用
BMC BIOLOGY 2023年 第1期21卷 294-294页
作者: Zhu, Huan Hao, Hongxia Yu, Liang Xidian Univ Sch Comp Sci & Technol Xian Peoples R China
BackgroundEnormous clinical and biomedical researches have demonstrated that microbes are crucial to human health. Identifying associations between microbes and diseases can not only reveal potential disease mechanism... 详细信息
来源: 评论
Epitomic variational graph autoencoder  25
Epitomic Variational Graph Autoencoder
收藏 引用
25th International Conference on Pattern Recognition (ICPR)
作者: Khan, Rayyan Ahmad Anwaar, Muhammad Umer Kleinsteuber, Martin Tech Univ Munich Munich Germany Mercateo AG Munich Germany
variational autoencoder (VAE) is a widely used generative model for learning latent representations. Burda et al. [3] in their seminal paper showed that learning capacity of VAE is limited by over-pruning. It is a phe... 详细信息
来源: 评论
Interpretable variational graph autoencoder with Noninformative Prior
收藏 引用
FUTURE INTERNET 2021年 第2期13卷 51-51页
作者: Sun, Lili Liu, Xueyan Zhao, Min Yang, Bo Jilin Univ Coll Software Changchun 130012 Peoples R China Jilin Univ Minist Educ Key Lab Symbol Computat & Knowledge Engineer Changchun 130012 Peoples R China Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China
variational graph autoencoder, which can encode structural information and attribute information in the graph into low-dimensional representations, has become a powerful method for studying graph-structured data. Howe... 详细信息
来源: 评论
Adversarial Attention-Based variational graph autoencoder
收藏 引用
IEEE ACCESS 2020年 8卷 152637-152645页
作者: Weng, Ziqiang Zhang, Weiyu Dou, Wei Shandong Acad Sci Qilu Univ Technol Sch Comp Sci & Technol Jinan 250353 Peoples R China
autoencoders have been successfully used for graph embedding, and many variants have been proven to effectively express graph data and conduct graph analysis in low-dimensional space. However, previous methods ignore ... 详细信息
来源: 评论
Deep graph embedding learning based on multi-variational graph autoencoders for POI recommendation
收藏 引用
DATA MINING AND KNOWLEDGE DISCOVERY 2025年 第4期39卷 1-21页
作者: Gong, Weihua Shen, Genhang Zhao, Anlun Yang, Lianghuai Cheng, Zhen Zhejiang Univ Technol Coll Comp Sci & Technol Hangzhou 310023 Peoples R China Zhejiang Univ Sch Software Technol Ningbo 315048 Peoples R China
Recently, point-of-interest (POI) recommendation has become a popular research hotspot in heterogeneous location-based social network (LBSN). One major recurring challenge in POI recommendation is that most existing w... 详细信息
来源: 评论
Link Activation Using variational graph autoencoders
收藏 引用
IEEE COMMUNICATIONS LETTERS 2021年 第7期25卷 2358-2361页
作者: Jamshidiha, Saeed Pourahmadi, Vahid Mohammadi, Abbas Bennis, Mehdi Amirkabir Univ Technol Dept Elect Engn Tehran 15914 Iran Univ Oulu Ctr Wireless Commun Oulu 90570 Finland
An unsupervised method is proposed for link activation in wireless networks by identifying clusters of interfering users. A k-nearest neighbors interference graph is first defined for the wireless network which is the... 详细信息
来源: 评论
Attention-guided variational graph autoencoders reveal heterogeneity in spatial transcriptomics
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2024年 第3期25卷 bbae173-bbae173页
作者: Lei, Lixin Han, Kaitai Wang, Zijun Shi, Chaojing Wang, Zhenghui Dai, Ruoyan Zhang, Zhiwei Wang, Mengqiu Guo, Qianjin Beijing Inst Petrochem Technol Acad Artificial Intelligence 19 Qingyuan North Rd Beijing 102617 Peoples R China
The latest breakthroughs in spatially resolved transcriptomics technology offer comprehensive opportunities to delve into gene expression patterns within the tissue microenvironment. However, the precise identificatio... 详细信息
来源: 评论
HPOseq: a deep ensemble model for predicting the protein-phenotype relationships based on protein sequences
收藏 引用
BMC BIOINFORMATICS 2025年 第1期26卷 1-15页
作者: Zhao, Kai Ji, Zhuocheng Zhang, Linlin Quan, Na Li, Yuheng Yu, Guanglei Bi, Xuehua Xinjiang Univ Sch Comp Sci & Technol Urumqi 830011 Peoples R China Xinjiang Univ Sch Software Urumqi 830011 Peoples R China Xinjiang Med Univ Coll Med Engn & Technol Urumqi 830011 Peoples R China Cent South Univ Sch Comp Sci & Engn Changsha 410083 Peoples R China
BackgroundUnderstanding the relationships between proteins and specific disease phenotypes contributes to the early detection of diseases and advances the development of personalized medicine. The acquisition of a lar... 详细信息
来源: 评论
Designing Connectivity-Guaranteed Porous Metamaterial Units Using Generative graph Neural Networks
收藏 引用
JOURNAL OF MECHANICAL DESIGN 2025年 第2期147卷 021706页
作者: Wang, Zihan Bray, Austin Khanghah, Kiarash Naghavi Xu, Hongyi Univ Connecticut Sch Mech Aerosp & Mfg Engn Storrs CT 06269 USA
Designing 3D porous metamaterial units while ensuring complete connectivity of both solid and pore phases presents a significant challenge. This complete connectivity is crucial for manufacturability and structure-flu... 详细信息
来源: 评论
Cross-domain recommendation via knowledge distillation
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2025年 311卷
作者: Li, Xiuze Huang, Zhenhua Wu, Zhengyang Wang, Changdong Chen, Yunwen South China Normal Univ Sch Artificial Intelligence Foshan 528225 Guangdong Peoples R China South China Normal Univ Sch Comp Sci Guangzhou 510631 Guangdong Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China DataGrandInc Res & Dev Dept Shanghai 201203 Peoples R China
Recommendation systems frequently suffer from data sparsity, resulting in less-than-ideal recommendations. A prominent solution to this problem is Cross-Domain Recommendation (CDR), which employs data from various dom... 详细信息
来源: 评论