咨询与建议

限定检索结果

文献类型

  • 202 篇 期刊文献
  • 134 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 341 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 323 篇 工学
    • 248 篇 计算机科学与技术...
    • 161 篇 电气工程
    • 50 篇 软件工程
    • 33 篇 信息与通信工程
    • 17 篇 电子科学与技术(可...
    • 15 篇 控制科学与工程
    • 14 篇 机械工程
    • 8 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 测绘科学与技术
  • 59 篇 医学
    • 56 篇 临床医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 16 篇 理学
    • 11 篇 物理学
    • 2 篇 化学
    • 2 篇 生物学
    • 1 篇 数学
    • 1 篇 地球物理学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 341 篇 video object seg...
  • 38 篇 object segmentat...
  • 27 篇 deep learning
  • 25 篇 task analysis
  • 20 篇 motion segmentat...
  • 18 篇 object tracking
  • 16 篇 image segmentati...
  • 14 篇 convolutional ne...
  • 13 篇 optical flow
  • 13 篇 feature extracti...
  • 13 篇 training
  • 9 篇 self-supervised ...
  • 9 篇 annotations
  • 8 篇 target tracking
  • 8 篇 decoding
  • 8 篇 convolutional ne...
  • 7 篇 transformer
  • 7 篇 markov random fi...
  • 7 篇 semi-supervised ...
  • 7 篇 tracking

机构

  • 7 篇 beijing jiaotong...
  • 6 篇 shanghai univ sc...
  • 5 篇 guangdong prov k...
  • 5 篇 beijing inst tec...
  • 5 篇 fudan univ acad ...
  • 5 篇 fudan univ sch c...
  • 4 篇 sun yat sen univ...
  • 4 篇 southern univ sc...
  • 4 篇 microsoft res as...
  • 4 篇 nanjing univ sci...
  • 4 篇 nanjing univ inf...
  • 3 篇 sun yat sen univ...
  • 3 篇 natl penghu univ...
  • 3 篇 tsinghua univ ts...
  • 3 篇 china univ min &...
  • 3 篇 univ chinese aca...
  • 3 篇 univ chinese aca...
  • 3 篇 beihang univ peo...
  • 3 篇 univ macau state...
  • 3 篇 korea univ sch e...

作者

  • 6 篇 zhang wenqiang
  • 6 篇 yang zhi-xin
  • 5 篇 zhang yongdong
  • 5 篇 chen yadang
  • 5 篇 yao rui
  • 5 篇 kim chang-su
  • 5 篇 liu zhi
  • 5 篇 wu enhua
  • 5 篇 lu huchuan
  • 5 篇 liu yong
  • 5 篇 zhang wei
  • 4 篇 koh yeong jun
  • 4 篇 hu wu-chih
  • 4 篇 he zifen
  • 4 篇 wang wenguan
  • 4 篇 zhou tianfei
  • 4 篇 li bo
  • 4 篇 guo pinxue
  • 4 篇 dang jisheng
  • 4 篇 guo yulan

语言

  • 332 篇 英文
  • 6 篇 中文
  • 3 篇 其他
检索条件"主题词=Video object segmentation"
341 条 记 录,以下是1-10 订阅
排序:
Exploring the Better Correlation for Few-Shot video object segmentation
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR video TECHNOLOGY 2025年 第3期35卷 2133-2146页
作者: Luo, Naisong Wang, Yuan Sun, Rui Xiong, Guoxin Zhang, Tianzhu Wu, Feng Univ Sci & Technol China Sch Informat Sci Hefei 230027 Peoples R China Deep Space Explorat Lab Hefei 230088 Peoples R China
Few-shot video object segmentation (FSVOS) aims to achieve accurate segmentation of novel objects in given video sequences, where the target objects are specified by limited annotated images as support. Most previous ... 详细信息
来源: 评论
Temporal Transductive Inference for Few-Shot video object segmentation
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2025年 1-18页
作者: Siam, Mennatullah Univ British Columbia Comp Sci Vancouver BC Canada
Few-shot video object segmentation (FS-VOS) aims at segmenting video frames using a few labelled examples of classes not seen during initial training. In this paper, we present a simple but effective temporal transduc... 详细信息
来源: 评论
MoBox: Enhancing video object segmentation With Motion-Augmented Box Supervision
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR video TECHNOLOGY 2025年 第1期35卷 405-417页
作者: Li, Xiaomin Wang, Qinghe Li, Dezhuang Ge, Mengmeng Jia, Xu He, You Lu, Huchuan Dalian Univ Technol Sch Artificial Intelligence Dalian 116024 Peoples R China Dalian Univ Technol Sch Informat & Commun Engn Dalian 116024 Peoples R China Tsinghua Univ Dept Comp Sci & Technol Beijing 100084 Peoples R China Tsinghua Univ Dept Elect Engn Beijing 100084 Peoples R China
We propose MoBox, a low-cost solution for semi-supervised video object segmentation that requires only bounding boxes as manual annotations for training. Built upon a mature semi-supervised video object segmentation n... 详细信息
来源: 评论
Self-supervised video object segmentation via pseudo label rectification
收藏 引用
PATTERN RECOGNITION 2025年 163卷
作者: Guo, Pinxue Zhang, Wei Li, Xiaoqiang Fan, Jianping Zhang, Wenqiang Fudan Univ Acad Engn & Technol Shanghai Peoples R China Fudan Univ Sch Comp Sci Shanghai Peoples R China Shanghai Key Lab Intelligent Informat Proc Shanghai Peoples R China Shanghai Univ Sch Comp Engn & Sci Shanghai Peoples R China Lenovo Res AI Lab Beijing Peoples R China
In this paper we propose a novel self-supervised framework for video object segmentation (VOS) which consists of siamese encoders and bi-decoders. Siamese encoders extract multi-level features and generate pseudo labe... 详细信息
来源: 评论
Vanishing mask refinement in semi-supervised video object segmentation
收藏 引用
APPLIED SOFT COMPUTING 2025年 172卷
作者: Pita, Javier Llerena, Juan P. Patricio, Miguel A. Berlanga, Antonio Usero, Luis Grp MasMovil MasMovil Team Ave Bruselas 38 Madrid 28108 Spain Univ Alcala Cognit Sci Res Grp Ctra Madrid Barcelona km Campus UnivCtra Madrid Barcelona km33600 Madrid 28805 Spain Univ Carlos III Madrid Comp Sci & Engn Dept Appl Artificial Intelligence Grp Avda Gregorio Peces-Barba & Martinez22Colmenarej Madrid 28270 Spain
This paper presents video object segmentation Enhanced with Segment Anything Model (VOS-E-SAM), a multistage architecture for Semi-supervised video object segmentation (SVOS) using the foundational Segment Anything Mo... 详细信息
来源: 评论
Unsupervised video object segmentation with mask transformer: boosting accuracy and efficiency through feature fusion
收藏 引用
VISUAL COMPUTER 2025年 1-12页
作者: Qu, Daikun Zhao, Hongwei Zhou, Mingzhu Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China Jilin Univ China Japan Union Hosp Changchun 130033 Peoples R China
This paper introduces a novel Mask Transformer framework for unsupervised video object segmentation, focusing on enhancing segmentation accuracy and efficiency. Our approach leverages the power of transformers to capt... 详细信息
来源: 评论
SKVOS: Sketch-Based video object segmentation with a Large-Scale Benchmark
收藏 引用
APPLIED SCIENCES-BASEL 2025年 第4期15卷 1751-1751页
作者: Yang, Ruolin Li, Da Hu, Conghui Zhang, Honggang Beijing Univ Posts & Telecommun Sch Artificial Intelligence Beijing 100876 Peoples R China Univ Surrey Ctr Vis Speech & Signal Proc SketchX Surrey GU2 7XH England Natl Univ Singapore Dept Comp Sci Singapore 119077 Singapore
In this paper, we propose sketch-based video object segmentation (SKVOS), a novel task that segments objects consistently across video frames using human-drawn sketches as queries. Traditional reference-based methods,... 详细信息
来源: 评论
MAHC: motion-appearance video object segmentation via hierarchical attention and multi-level clustering
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第5期81卷 1-30页
作者: Cao, Honghui Yang, Yang Cao, Lvchen Liu, Chenyang Hou, Yandong Wang, Jun Henan Univ Sch Artificial Intelligence 379 Mingli Rd North Zhengzhou 450046 Henan Peoples R China Henan Univ Technol LuoHe Vocat Technol Coll 100 Lianhua StHigh Tech Dev Zone Zhengzhou 450001 Henan Peoples R China Henan JinShu Intelligence Technol Co Ltd Zhengzhou Henan Peoples R China
Unsupervised video object segmentation (UVOS) aims to automatically segment the most salient and semantically meaningful objects in a video without relying on manual annotations. Existing methods often focus on direct... 详细信息
来源: 评论
Scribble-Supervised video object segmentation via Scribble Enhancement
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR video TECHNOLOGY 2025年 第4期35卷 2999-3012页
作者: Gao, Xingyu Li, Zuolei Shi, Hailong Chen, Zhenyu Zhao, Peilin Chinese Acad Sci Inst Microelect Beijing 100029 Peoples R China State Grid Corp China Big Data Ctr Beijing 100031 Peoples R China China Elect Power Res Inst Beijing 100192 Peoples R China Tencent AI Lab Shenzhen 518000 Peoples R China
Current video object segmentation methods heavily rely on pixel-level mask annotations when training, which are expensive and time-consuming to acquire. To address this problem, some approaches try to train with spars... 详细信息
来源: 评论
PRM: A Pixel-Region-Matching Approach for Fast video object segmentation  7th
PRM: A Pixel-Region-Matching Approach for Fast Video Object ...
收藏 引用
7th Chinese Conference on Pattern Recognition and Computer Vision
作者: Wang, Zhen Zhang, Wenbin Li, Jiahao Zhu, Wencheng Song, Danqing Hebei Univ Technol Tianjin Peoples R China Tsinghua Univ Beijing Peoples R China South China Univ Technol Guangzhou Peoples R China
We present a pixel-region-matching approach for fast semi-supervised video object segmentation. Unlike existing methods that exploit pixel-wise similarities between search and query inputs, our method simultaneously e... 详细信息
来源: 评论