咨询与建议

限定检索结果

文献类型

  • 203 篇 期刊文献
  • 134 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 342 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 248 篇 计算机科学与技术...
    • 161 篇 电气工程
    • 50 篇 软件工程
    • 34 篇 信息与通信工程
    • 17 篇 电子科学与技术(可...
    • 15 篇 控制科学与工程
    • 14 篇 机械工程
    • 9 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 测绘科学与技术
  • 59 篇 医学
    • 56 篇 临床医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 17 篇 理学
    • 11 篇 物理学
    • 2 篇 化学
    • 2 篇 生物学
    • 2 篇 系统科学
    • 1 篇 数学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 342 篇 video object seg...
  • 38 篇 object segmentat...
  • 27 篇 deep learning
  • 25 篇 task analysis
  • 20 篇 motion segmentat...
  • 18 篇 object tracking
  • 16 篇 image segmentati...
  • 14 篇 convolutional ne...
  • 13 篇 optical flow
  • 13 篇 feature extracti...
  • 13 篇 training
  • 9 篇 self-supervised ...
  • 9 篇 annotations
  • 8 篇 target tracking
  • 8 篇 decoding
  • 8 篇 convolutional ne...
  • 7 篇 transformer
  • 7 篇 markov random fi...
  • 7 篇 semi-supervised ...
  • 7 篇 tracking

机构

  • 7 篇 beijing jiaotong...
  • 6 篇 shanghai univ sc...
  • 5 篇 guangdong prov k...
  • 5 篇 beijing inst tec...
  • 5 篇 fudan univ acad ...
  • 5 篇 fudan univ sch c...
  • 4 篇 sun yat sen univ...
  • 4 篇 southern univ sc...
  • 4 篇 microsoft res as...
  • 4 篇 nanjing univ sci...
  • 4 篇 nanjing univ inf...
  • 3 篇 sun yat sen univ...
  • 3 篇 natl penghu univ...
  • 3 篇 tsinghua univ ts...
  • 3 篇 china univ min &...
  • 3 篇 univ chinese aca...
  • 3 篇 univ chinese aca...
  • 3 篇 beihang univ peo...
  • 3 篇 univ macau state...
  • 3 篇 korea univ sch e...

作者

  • 6 篇 zhang wenqiang
  • 6 篇 yang zhi-xin
  • 5 篇 zhang yongdong
  • 5 篇 chen yadang
  • 5 篇 yao rui
  • 5 篇 kim chang-su
  • 5 篇 liu zhi
  • 5 篇 wu enhua
  • 5 篇 lu huchuan
  • 5 篇 liu yong
  • 5 篇 zhang wei
  • 4 篇 koh yeong jun
  • 4 篇 hu wu-chih
  • 4 篇 he zifen
  • 4 篇 wang wenguan
  • 4 篇 zhou tianfei
  • 4 篇 li bo
  • 4 篇 guo pinxue
  • 4 篇 dang jisheng
  • 4 篇 guo yulan

语言

  • 333 篇 英文
  • 6 篇 中文
  • 3 篇 其他
检索条件"主题词=Video object segmentation"
342 条 记 录,以下是41-50 订阅
排序:
Global video object segmentation with spatial constraint module
收藏 引用
Computational Visual Media 2023年 第2期9卷 385-400页
作者: Yadang Chen Duolin Wang Zhiguo Chen Zhi-Xin Yang Enhua Wu Engineering Research Center of Digital Forensics Ministry of EducationSchool of Computer and SoftwareNanjing University of Information Science and TechnologyNanjing 210044China State Key Laboratory of Internet of Things for Smart City Department of Electromechanical EngineeringUniversity of MacaoMacao 999078China State Key Laboratory of Computer Science Institute of SoftwareUniversity of Chinese Academy of SciencesBeijing 100190China Faculty of Science and Technology University of MacaoMacao 999078China
We present a lightweight and efficient semisupervised video object segmentation network based on the space-time memory *** some extent,our method solves the two difficulties encountered in traditional video object se... 详细信息
来源: 评论
Scribble-Supervised video object segmentation
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2022年 第2期9卷 339-353页
作者: Peiliang Huang Junwei Han Nian Liu Jun Ren Dingwen Zhang Brain and Artificial Intelligence Laboratory School of AutomationNorthwestern Polytechnical UniversityXi’an 710072China IEEE Department of Engagement Services Mohamed Bin Zayed University of Artificial IntelligenceAbuDhabiUnited Arab Emirate Science and Technology on Complex System Control and Intelligent Agent Cooperation Laboratory BeijingChina
Recently,video object segmentation has received great attention in the computer vision *** of the existing methods heavily rely on the pixel-wise human annotations,which are expensive and time-consuming to *** tackle ... 详细信息
来源: 评论
ASDeM: Augmenting SAM With Decoupled Memory for video object segmentation
收藏 引用
IEEE ACCESS 2024年 12卷 73218-73227页
作者: Liu, Xiaohu Luo, Yichuang Sun, Wei Shaanxi Univ Technol Trine Engn Inst Hanzhong 723001 Peoples R China Xian Peihua Univ Dept Intelligent Sci & Engn Xian 710125 Peoples R China Shaanxi Univ Technol Sch Mech Engn Hanzhong 723001 Peoples R China
video object segmentation models have gained impressive performance, but present low interactivity with different prompts, such as click, box or text. Some models combined with SAM in a naive manner to enhance this ab... 详细信息
来源: 评论
Adaptive Selection of Reference Frames for video object segmentation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 1057-1071页
作者: Hong, Lingyi Zhang, Wei Chen, Liangyu Zhang, Wenqiang Fan, Jianping Fudan Univ Sch Comp Sci Shanghai Key Lab Intelligent Informat Proc Shanghai Peoples R China Lenovo Res AI Lab Beijing 100085 Peoples R China
video object segmentation is a challenging task in computer vision because the appearances of target objects might change drastically along the time in the video. To solve this problem, space-time memory (STM) network... 详细信息
来源: 评论
Semi-automatic video object segmentation using seeded region merging and bidirectional projection
收藏 引用
PATTERN RECOGNITION LETTERS 2005年 第5期26卷 653-662页
作者: Liu, Z Yang, J Peng, NS Shanghai Jiao Tong Univ Inst Image Proc & Pattern Recognit Shanghai 200030 Peoples R China
In this paper, we propose a novel approach to semi-automatic video object segmentation. First, an interactive video object segmentation tool is presented for the user to easily define the desired video objects in the ... 详细信息
来源: 评论
Unified Spatio-Temporal Dynamic Routing for Efficient video object segmentation
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第5期25卷 4512-4526页
作者: Dang, Jisheng Zheng, Huicheng Xu, Xiaohao Guo, Yulan Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China Guangdong Prov Key Lab Informat Secur Technol Guangzhou 510006 Peoples R China Univ Michigan Robot Dept Ann Arbor MI 48104 USA Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen Campus Shenzhen 518000 Peoples R China Natl Univ Def Technol Coll Elect Sci & Technol Changsha 410073 Peoples R China
Existing methods for video object segmentation (VOS) have achieved significant success by performing semantic guidance, spatial constraint, or temporal consistency. However, VOS still remains highly challenging becaus... 详细信息
来源: 评论
Weakly Supervised video object segmentation via Dual-attention Cross-branch Fusion
收藏 引用
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY 2022年 第3期13卷 46-46页
作者: Wei, Lili Lang, Congyan Liang, Liqian Feng, Songhe Wang, Tao Chen, Shidi Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Key Lab Traff Data Anal & Min 3 Shangyuancun Beijing 100044 Peoples R China
Recently, concerning the challenge of collecting large-scale explicitly annotated videos, weakly supervised video object segmentation (WSVOS) using video tags has attracted much attention. Existing WSVOS approaches fo... 详细信息
来源: 评论
Unsupervised video object segmentation Based on Mixture Models and Saliency Detection
收藏 引用
NEURAL PROCESSING LETTERS 2020年 第1期51卷 657-674页
作者: Lin, Guofeng Fan, Wentao Huaqiao Univ Dept Comp Sci & Technol Xiamen Peoples R China
In this paper, we propose an unsupervised video object segmentation approach which is mainly based on a saliency detection method and the Gaussian mixture model with Markov random field. In our approach, the saliency ... 详细信息
来源: 评论
Effective online refinement for video object segmentation
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2019年 第23期78卷 33617-33631页
作者: Li, Gongyang Liu, Zhi Zhou, Xiaofei Shanghai Univ Shanghai Inst Adv Commun & Data Sci Shanghai 200444 Peoples R China Shanghai Univ Sch Commun & Informat Engn Shanghai 200444 Peoples R China Hangzhou Dianzi Univ Inst Informat & Control Hangzhou 310018 Peoples R China
In this paper, we propose a novel framework, which deeply explores themotion cue and the online fine-tuning strategy to tackle the task of semi-supervised video object segmentation. First, in order to filter out the i... 详细信息
来源: 评论
Space-Time Memory Networks for video object segmentation With User Guidance
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2022年 第1期44卷 442-455页
作者: Oh, Seoung Wug Lee, Joon-Young Xu, Ning Kim, Seon Joo Yonsei Univ Seoul 03722 South Korea Adobe Res San Jose CA 95110 USA
We propose a novel and unified solution for user-guided video object segmentation tasks. In this work, we consider two scenarios of user-guided segmentation: semi-supervised and interactive segmentation. Due to the na... 详细信息
来源: 评论