咨询与建议

限定检索结果

文献类型

  • 203 篇 期刊文献
  • 134 篇 会议
  • 5 篇 学位论文

馆藏范围

  • 342 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 324 篇 工学
    • 248 篇 计算机科学与技术...
    • 161 篇 电气工程
    • 50 篇 软件工程
    • 34 篇 信息与通信工程
    • 17 篇 电子科学与技术(可...
    • 15 篇 控制科学与工程
    • 14 篇 机械工程
    • 9 篇 仪器科学与技术
    • 4 篇 交通运输工程
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 航空宇航科学与技...
    • 2 篇 生物医学工程(可授...
    • 1 篇 力学(可授工学、理...
    • 1 篇 测绘科学与技术
  • 59 篇 医学
    • 56 篇 临床医学
    • 2 篇 特种医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 医学技术(可授医学...
  • 17 篇 理学
    • 11 篇 物理学
    • 2 篇 化学
    • 2 篇 生物学
    • 2 篇 系统科学
    • 1 篇 数学
    • 1 篇 地球物理学
    • 1 篇 生态学
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 农学
  • 1 篇 艺术学
    • 1 篇 设计学(可授艺术学...

主题

  • 342 篇 video object seg...
  • 38 篇 object segmentat...
  • 27 篇 deep learning
  • 25 篇 task analysis
  • 20 篇 motion segmentat...
  • 18 篇 object tracking
  • 16 篇 image segmentati...
  • 14 篇 convolutional ne...
  • 13 篇 optical flow
  • 13 篇 feature extracti...
  • 13 篇 training
  • 9 篇 self-supervised ...
  • 9 篇 annotations
  • 8 篇 target tracking
  • 8 篇 decoding
  • 8 篇 convolutional ne...
  • 7 篇 transformer
  • 7 篇 markov random fi...
  • 7 篇 semi-supervised ...
  • 7 篇 tracking

机构

  • 7 篇 beijing jiaotong...
  • 6 篇 shanghai univ sc...
  • 5 篇 guangdong prov k...
  • 5 篇 beijing inst tec...
  • 5 篇 fudan univ acad ...
  • 5 篇 fudan univ sch c...
  • 4 篇 sun yat sen univ...
  • 4 篇 southern univ sc...
  • 4 篇 microsoft res as...
  • 4 篇 nanjing univ sci...
  • 4 篇 nanjing univ inf...
  • 3 篇 sun yat sen univ...
  • 3 篇 natl penghu univ...
  • 3 篇 tsinghua univ ts...
  • 3 篇 china univ min &...
  • 3 篇 univ chinese aca...
  • 3 篇 univ chinese aca...
  • 3 篇 beihang univ peo...
  • 3 篇 univ macau state...
  • 3 篇 korea univ sch e...

作者

  • 6 篇 zhang wenqiang
  • 6 篇 yang zhi-xin
  • 5 篇 zhang yongdong
  • 5 篇 chen yadang
  • 5 篇 yao rui
  • 5 篇 kim chang-su
  • 5 篇 liu zhi
  • 5 篇 wu enhua
  • 5 篇 lu huchuan
  • 5 篇 liu yong
  • 5 篇 zhang wei
  • 4 篇 koh yeong jun
  • 4 篇 hu wu-chih
  • 4 篇 he zifen
  • 4 篇 wang wenguan
  • 4 篇 zhou tianfei
  • 4 篇 li bo
  • 4 篇 guo pinxue
  • 4 篇 dang jisheng
  • 4 篇 guo yulan

语言

  • 333 篇 英文
  • 6 篇 中文
  • 3 篇 其他
检索条件"主题词=Video object segmentation"
342 条 记 录,以下是51-60 订阅
排序:
Temporo-Spatial Parallel Sparse Memory Networks for Efficient video object segmentation
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2024年 第11期25卷 17291-17304页
作者: Dang, Jisheng Zheng, Huicheng Wang, Bimei Wang, Longguang Guo, Yulan Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou 510006 Peoples R China Guangdong Key Lab Informat Secur Technol Guangzhou 510006 Peoples R China Jinan Univ Coll Informat Sci & Technol Guangzhou 510006 Peoples R China Aviat Univ Air Force Coll Elect Sci & Technol Changchun 130022 Peoples R China Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen 518107 Peoples R China
Memory-based networks have achieved tremendous success in video object segmentation. However, these methods still suffer from unfaithful segmentation and inferior efficiency under complicated video scenarios. The reas... 详细信息
来源: 评论
A New Spatio-Temporal Saliency-Based video object segmentation (vol 8, pg 629, 2016)
收藏 引用
COGNITIVE COMPUTATION 2016年 第4期8卷 648-648页
作者: Tu, Zhengzheng Abel, Andrew Zhang, Lei Luo, Bin Hussain, Amir Anhui Univ Sch Comp Sci & Technol Hefei 230601 Peoples R China Univ Stirling Comp Sci & Math Stirling FK9 4LA Scotland
Humans and animals are able to segment visual scenes by having the natural cognitive ability to quickly identify salient objects in both static and dynamic scenes. In this paper, we present a new spatio-temporal-based... 详细信息
来源: 评论
Integrating instance-level knowledge to see the unseen: A two-stream network for video object segmentation
收藏 引用
NEUROCOMPUTING 2024年 602卷
作者: Lu, Hannan Tian, Zhi Wei, Pengxu Ren, Haibing Zuo, Wangmeng Harbin Inst Technol Sch Comp Sci & Technol 92 Xidazhi St Harbin 150006 Peoples R China
Existing matching-based video object segmentation (VOS) approaches carry inherent limitations in segmenting pixels that have never appeared in the previous frames ( i.e. , unseen pixels). In this paper, we introduce a... 详细信息
来源: 评论
Adaptive ROI generation for video object segmentation using reinforcement learning
收藏 引用
PATTERN RECOGNITION 2020年 106卷 107465-107465页
作者: Sun, Mingjie Xiao, Jimin Lim, Eng Gee Xie, Yanchun Feng, Jiashi Xian Jiaotong Liverpool Univ Suzhou Peoples R China Univ Liverpool Liverpool Merseyside England Natl Univ Singapore Singapore Singapore
The task of the proposed method is semi-supervised video object segmentation where only the ground-truth segmentation of the first frame is provided. The existing approaches rely on selecting the region of interest fo... 详细信息
来源: 评论
A temporal attention based appearance model for video object segmentation
收藏 引用
APPLIED INTELLIGENCE 2022年 第2期52卷 2290-2300页
作者: Wang, Hui Liu, Weibin Xing, Weiwei Beijing Jiaotong Univ Inst Informat Sci Beijing 100044 Peoples R China Beijing Jiaotong Univ Sch Software Engn Beijing 100044 Peoples R China
More and more researchers have recently paid attention to video object segmentation because it is an important building block for numerous computer vision applications. Although many algorithms promote its development... 详细信息
来源: 评论
Efficient and Robust video object segmentation Through Isogenous Memory Sampling and Frame Relation Mining
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 3924-3938页
作者: Dang, Jisheng Zheng, Huicheng Lai, Jinming Yan, Xu Guo, Yulan Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou 510006 Peoples R China GuangDong Prov Key Lab Informat Secur Technol Guangzhou 510006 Peoples R China Chinese Univ Hong Kong Future Network Intelligence Inst FNii Deep Bit Lab Shenzhen 518172 Peoples R China Chinese Univ Hong Kong Sch Sci & Engn Shenzhen 518172 Peoples R China Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen Campus Shenzhen 510275 Peoples R China
Recently, memory-based methods have achieved remarkable progress in video object segmentation. However, the segmentation performance is still limited by error accumulation and redundant memory, primarily because of 1)... 详细信息
来源: 评论
LiDAR video object segmentation with dynamic kernel refinement
收藏 引用
PATTERN RECOGNITION LETTERS 2024年 178卷 21-27页
作者: Mei, Jianbiao Yang, Yu Wang, Mengmeng Li, Zizhang Ra, Jongwon Liu, Yong Zhejiang Univ Inst Cyber Syst & Control Hangzhou 310027 Peoples R China
In this paper, we formalize memory-and tracking-based methods to perform the LiDAR-based video object segmentation (VOS) task, which segments points of the specific 3D target (given in the first frame) in a LiDAR sequ... 详细信息
来源: 评论
Bilateral Temporal Re-Aggregation for Weakly-Supervised video object segmentation
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR video TECHNOLOGY 2022年 第7期32卷 4498-4512页
作者: Lin, Fanchao Xie, Hongtao Liu, Chuanbin Zhang, Yongdong Univ Sci & Technol China Natl Engn Lab Brain Inspired Intelligence Technol Hefei 230026 Peoples R China
Weakly-supervised video object segmentation is an emerging video task to track and segment the target given a simple bounding box label, which requires the method to fully catch and utilize the target information. Mas... 详细信息
来源: 评论
Weakly supervised video object segmentation initialized with referring expression
收藏 引用
NEUROCOMPUTING 2021年 453卷 754-765页
作者: Bu, Xiaoqing Sun, Yukuan Wang, Jianming Liu, Kunliang Liang, Jiayu Jin, Guanghao Chung, Tae-Sun Tiangong Univ Sch Elect & Informat Engn Tianjin Peoples R China Ctr Engn Internship & Training Tianjin Peoples R China Tiangong Univ Tianjin Int Joint Res & Dev Ctr Autonomous Intell Tianjin Peoples R China Tiangong Univ Tianjin Key Lab Autonomous Intelligence Technol & Tianjin Peoples R China Tiangong Univ Sch Comp Sci & Technol Tianjin Peoples R China Ajou Univ Dept Software Suwon South Korea
With the aid of one manually annotated frame, One-Shot video object segmentation (OSVOS) uses a CNN architecture to tackle the problem of semi-supervised video object segmentation (VOS). However, annotating a pixel-le... 详细信息
来源: 评论
Motion cues guided feature aggregation and enhancement for video object segmentation
收藏 引用
NEUROCOMPUTING 2022年 493卷 176-190页
作者: Li, Xuejun Zheng, Wenming Zong, Yuan Southeast Univ Sch Biol Sci & Med Engn Key Lab Child Dev & Learning Sci Minist Educ Nanjing Peoples R China
video object segmentation (VOS) aims to separate unknown target objects from various given video sequences. Although many recent successful methods boosted the performance of VOS, especially those using deep convoluti... 详细信息
来源: 评论