咨询与建议

限定检索结果

文献类型

  • 81 篇 期刊文献
  • 74 篇 会议

馆藏范围

  • 155 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 141 篇 工学
    • 116 篇 计算机科学与技术...
    • 48 篇 电气工程
    • 14 篇 软件工程
    • 12 篇 信息与通信工程
    • 8 篇 控制科学与工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 仪器科学与技术
    • 3 篇 交通运输工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 水利工程
    • 1 篇 农业工程
    • 1 篇 环境科学与工程(可...
  • 20 篇 医学
    • 10 篇 临床医学
    • 8 篇 特种医学
    • 5 篇 基础医学(可授医学...
  • 16 篇 理学
    • 7 篇 物理学
    • 4 篇 化学
    • 3 篇 数学
    • 3 篇 生物学
    • 2 篇 地理学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
  • 10 篇 管理学
    • 8 篇 管理科学与工程(可...
    • 2 篇 公共管理
  • 1 篇 农学

主题

  • 155 篇 vision-language ...
  • 13 篇 visualization
  • 11 篇 large language m...
  • 11 篇 prompt learning
  • 10 篇 clip
  • 10 篇 training
  • 10 篇 prompt tuning
  • 9 篇 object detection
  • 8 篇 adaptation model...
  • 7 篇 deep learning
  • 7 篇 semantics
  • 7 篇 few-shot learnin...
  • 6 篇 knowledge distil...
  • 5 篇 task analysis
  • 5 篇 zero-shot learni...
  • 5 篇 feature extracti...
  • 4 篇 multimodal learn...
  • 4 篇 tuning
  • 4 篇 continual learni...
  • 4 篇 contrastive lear...

机构

  • 4 篇 shanghai ai lab ...
  • 4 篇 peng cheng lab p...
  • 3 篇 univ sci & techn...
  • 3 篇 chinese univ hon...
  • 3 篇 sensetime res pe...
  • 2 篇 univ michigan an...
  • 2 篇 hong kong polyte...
  • 2 篇 sun yat sen univ...
  • 2 篇 shanghai univ pe...
  • 2 篇 beijing univ tec...
  • 2 篇 univ chinese aca...
  • 2 篇 wuhan univ sch c...
  • 2 篇 harbin inst tech...
  • 2 篇 tongji univ coll...
  • 2 篇 northeastern uni...
  • 2 篇 chinese acad sci...
  • 2 篇 xidian univ sch ...
  • 2 篇 tianjin univ col...
  • 2 篇 chongqing univ p...
  • 2 篇 tsinghua univ sh...

作者

  • 5 篇 qiao yu
  • 3 篇 gao peng
  • 3 篇 obinata yoshiki
  • 3 篇 inaba masayuki
  • 3 篇 kawaharazuka ken...
  • 3 篇 wang ruixuan
  • 3 篇 dai jifeng
  • 3 篇 okada kei
  • 3 篇 kanazawa naoaki
  • 2 篇 zhou jie
  • 2 篇 wang lei
  • 2 篇 li xin
  • 2 篇 chen zhe
  • 2 篇 guo tao
  • 2 篇 luo ping
  • 2 篇 zhang tong
  • 2 篇 yang xi
  • 2 篇 liu liangchen
  • 2 篇 fang zhen
  • 2 篇 guo song

语言

  • 154 篇 英文
  • 1 篇 德文
  • 1 篇 法文
  • 1 篇 其他
检索条件"主题词=Vision-language Model"
155 条 记 录,以下是41-50 订阅
排序:
Attention head purification: A new perspective to harness CLIP for domain generalization
收藏 引用
IMAGE AND vision COMPUTING 2025年 157卷
作者: Wang, Yingfan Kang, Guoliang Beihang Univ 37 Xueyuan Rd Beijing 100191 Peoples R China
Domain Generalization (DG) aims to learn a model from multiple source domains to achieve satisfactory performance on unseen target domains. Recent works introduce CLIP to DG tasks due to its superior image-text alignm... 详细信息
来源: 评论
Inference Calibration of vision-language Foundation models for Zero-Shot and Few-Shot Learning
收藏 引用
PATTERN RECOGNITION LETTERS 2025年 192卷 15-21页
作者: Hu, Minyang Chang, Hong Shan, Shiguang Chen, Xilin Chinese Acad Sci Chinese Acad Sci CAS Inst Comp Technol Key Lab Intelligent Informat Proc Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
Contrastive language-Image Pre-training (CLIP) models exhibit impressive zero-shot performance across various downstream cross-modal tasks by simply computing the dot product between image and text features. CLIP is p... 详细信息
来源: 评论
ItpCtrl-AI: End-to-end interpretable and controllable artificial intelligence by modeling radiologists' intentions☆
收藏 引用
ARTIFICIAL INTELLIGENCE IN MEDICINE 2025年 160卷 103054-103054页
作者: Pham, Trong-Thang Brecheisen, Jacob Wu, Carol C. Nguyen, Hien Deng, Zhigang Adjeroh, Donald Doretto, Gianfranco Choudhary, Arabinda Le, Ngan Univ Arkansas Dept EECS AICV Lab Little Rock AR 72701 USA MD Anderson Canc Ctr Houston TX 77079 USA Univ Houston Dept ECE Houston TX 77204 USA Univ Houston Dept CS Houston TX 77204 USA West Virginia Univ Dept CSEE Morgantown WV 26506 USA Univ Arkansas Med Sci Little Rock AR 72705 USA
Using Deep Learning in computer-aided diagnosis systems has been of great interest due to its impressive performance in the general domain and medical domain. However, a notable challenge is the lack of explainability... 详细信息
来源: 评论
When Adversarial Training Meets Prompt Tuning: Adversarial Dual Prompt Tuning for Unsupervised Domain Adaptation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2025年 34卷 1427-1440页
作者: Cui, Chaoran Liu, Ziyi Gong, Shuai Zhu, Lei Zhang, Chunyun Liu, Hui Shandong Univ Finance & Econ Sch Comp & Artificial Intelligence Jinan 250014 Peoples R China Tongji Univ Coll Elect & Informat Engn Shanghai 201804 Peoples R China
Unsupervised domain adaptation (UDA) aims to adapt models learned from a well-annotated source domain to a target domain, where only unlabeled samples are available. To this end, adversarial training is widely used in... 详细信息
来源: 评论
Transferable Unintentional Action Localization With language-Guided Intention Translation
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025年 第5期47卷 3863-3877页
作者: Xu, Jinglin Rao, Yongming Zhou, Jie Lu, Jiwen Univ Sci & Technol Sch Intelligence Sci & Technol Beijing 100083 Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
Unintentional action localization (UAL) is a challenging task that requires reasoning about action intention clues to detect the temporal locations of unintentional action occurrences in real-world videos. Previous ef... 详细信息
来源: 评论
Class Concept Representation From Contextual Texts for Training-Free Multi-Label Recognition
收藏 引用
IEEE ACCESS 2025年 13卷 36965-36977页
作者: Kang, Dong Un Lee, Hyunwoo Chun, Se Young Seoul Natl Univ Dept Elect & Comp Engn Seoul 08826 South Korea Seoul Natl Univ INMC Seoul 08826 South Korea Seoul Natl Univ IPAI Seoul 08826 South Korea
The power of large vision-language models (VLMs) has been demonstrated for downstream vision tasks, including multi-label recognition (MLR) with a training-free approach or prompt tuning by measuring the cosine simila... 详细信息
来源: 评论
GL-MCM: Global and Local Maximum Concept Matching for Zero-Shot Out-of-Distribution Detection
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER vision 2025年 第6期133卷 3586-3596页
作者: Miyai, Atsuyuki Yu, Qing Irie, Go Aizawa, Kiyoharu Univ Tokyo Tokyo Japan LY Corp Tokyo Japan Tokyo Univ Sci Tokyo Japan
Zero-shot OOD detection is a task that detects OOD images during inference with only in-distribution (ID) class names. Existing methods assume ID images contain a single, centered object, and do not consider the more ... 详细信息
来源: 评论
Learning Semantic-aware Representation in Visual-language models for Multi-label Recognition with Partial Labels
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2025年 第3期21卷 1-19页
作者: Ruan, Haoxian Xu, Zhihua Yang, Zhijing Lu, Yongyi Qin, Jinghui Chen, Tianshui Guangdong Univ Technol Guangzhou Peoples R China Guangdong Univ Technol Informat Engn Guangzhou Peoples R China
Multi-label recognition with partial labels (MLR-PL), in which only some labels are known while others are unknown for each image, is a practical task in computer vision, since collecting large-scale and complete mult... 详细信息
来源: 评论
Bi-VLGM: Bi-Level Class-Severity-Aware vision-language Graph Matching for Text Guided Medical Image Segmentation
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER vision 2025年 第3期133卷 1375-1391页
作者: Chen, Wenting Liu, Jie Liu, Tianming Yuan, Yixuan City Univ Hong Kong Dept Elect Engn Kowloon Hong Kong Peoples R China Chinese Univ Hong Kong Dept Elect Engn Sha Tin Hong Kong Peoples R China Univ Georgia Dept Comp Sci Athens GA USA
Medical reports containing specific diagnostic results and additional information not present in medical images can be effectively employed to assist image understanding tasks, and the modality gap between vision and ... 详细信息
来源: 评论
Enhancing cross-domain generalization by fusing language-guided feature remapping
收藏 引用
INFORMATION FUSION 2025年 119卷
作者: Qiao, Ziteng Shi, Dianxi Jin, Songchang Shi, Yanyan Jing, Luoxi Qiu, Chunping Acad Mil Sci Beijing 100071 Peoples R China Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China
Domain generalization refers to training a model with annotated source domain data and making it generalize to various unseen target domains. It has been extensively studied in classification, but remains challenging ... 详细信息
来源: 评论