咨询与建议

限定检索结果

文献类型

  • 65 篇 期刊文献
  • 22 篇 会议
  • 3 篇 学位论文
  • 2 件 标准

馆藏范围

  • 92 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 78 篇 工学
    • 50 篇 计算机科学与技术...
    • 39 篇 电气工程
    • 11 篇 软件工程
    • 10 篇 信息与通信工程
    • 7 篇 控制科学与工程
    • 3 篇 机械工程
    • 2 篇 光学工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 土木工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 电子科学与技术(可...
    • 1 篇 建筑学
    • 1 篇 水利工程
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 林业工程
    • 1 篇 环境科学与工程(可...
  • 20 篇 理学
    • 10 篇 物理学
    • 6 篇 生物学
    • 2 篇 化学
    • 2 篇 地球物理学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 科学技术史(分学科...
  • 10 篇 医学
    • 7 篇 临床医学
    • 5 篇 基础医学(可授医学...
  • 3 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 2 篇 农学
  • 1 篇 法学
    • 1 篇 法学
  • 1 篇 历史学
    • 1 篇 考古学
  • 1 篇 艺术学

主题

  • 92 篇 visual classific...
  • 8 篇 deep learning
  • 7 篇 feature extracti...
  • 6 篇 transfer learnin...
  • 5 篇 sparse represent...
  • 5 篇 visualization
  • 5 篇 training
  • 3 篇 object detection
  • 3 篇 neural network
  • 3 篇 federated learni...
  • 3 篇 computer vision
  • 3 篇 face verificatio...
  • 3 篇 data models
  • 3 篇 adaptation model...
  • 3 篇 convolutional ne...
  • 2 篇 softmax loss
  • 2 篇 task analysis
  • 2 篇 ultrasound
  • 2 篇 neural processes
  • 2 篇 domain adaptatio...

机构

  • 5 篇 natl univ singap...
  • 2 篇 shiraz univ dept...
  • 2 篇 tianjin univ sch...
  • 2 篇 huazhong univ sc...
  • 2 篇 chinese acad sci...
  • 2 篇 beijing samsung ...
  • 2 篇 chongqing univ p...
  • 2 篇 xidian univ sch ...
  • 2 篇 chinese acad sci...
  • 2 篇 henan univ techn...
  • 2 篇 charles sturt un...
  • 2 篇 chinese acad sci...
  • 2 篇 nanjing univ sci...
  • 2 篇 chinese acad sci...
  • 2 篇 china univ petr ...
  • 1 篇 dailian univ tec...
  • 1 篇 china univ petr ...
  • 1 篇 univ washington ...
  • 1 篇 aselsan arastirm...
  • 1 篇 wuhan univ comp ...

作者

  • 5 篇 yan shuicheng
  • 2 篇 zheng wei
  • 2 篇 gao junbin
  • 2 篇 yang xi
  • 2 篇 gao yue
  • 2 篇 chen liming
  • 2 篇 tian qi
  • 2 篇 cheng jian
  • 2 篇 tang tang
  • 2 篇 jin junwei
  • 2 篇 hashemi sattar
  • 2 篇 zhang chunjie
  • 2 篇 qiao hong
  • 2 篇 lu canyi
  • 2 篇 luo lingkun
  • 2 篇 hu shiqiang
  • 2 篇 wang qilong
  • 2 篇 kong dechen
  • 2 篇 fard seyed mehdi...
  • 2 篇 gao xinbo

语言

  • 89 篇 英文
  • 2 篇 中文
  • 1 篇 其他
检索条件"主题词=Visual Classification"
92 条 记 录,以下是1-10 订阅
排序:
visual classification and Detection of Power Inspection Images Based on Federated Learning
收藏 引用
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS 2024年 第4期60卷 5460-5469页
作者: Zhong, Linlin Liu, Keyu Southeast Univ Sch Elect Engn Nanjing 210096 Peoples R China Southeast Univ SEU Monash Joint Grad Sch Suzhou 215123 Peoples R China
The power lines and equipment of power system are inspected regularly by Unmanned Aerial Vehicles (UAVs) and video monitoring devices, which generates large quantities of power inspection images. The deep learning (DL... 详细信息
来源: 评论
Multi-granularity hypergraph-guided transformer learning framework for visual classification
收藏 引用
visual COMPUTER 2025年 第4期41卷 2391-2408页
作者: Jiang, Jianjian Chen, Ziwei Lei, Fangyuan Xu, Long Huang, Jiahao Yuan, Xiaochen Guangdong Polytech Normal Univ Guangdong Prov Key Lab Intellectual Property & Big Guangzhou 510665 Peoples R China Macao Polytech Univ Fac Appl Sci Macau 999078 Peoples R China
Fine-grained single-label classification tasks aim to distinguish highly similar categories but often overlook inter-category relationships. Hierarchical multi-granularity visual classification strives to categorize i... 详细信息
来源: 评论
Research on fine-grained visual classification based on salient object detection
收藏 引用
LASER PHYSICS 2025年 第5期35卷 055201-055201页
作者: Tao, Rong Shen, Dafu Zhang, Leihong Shen, Zimin Qian, Zhenhua Xu, Banglian Zhang, Dawei Univ Shanghai Sci & Technol Sch Opt Elect & Comp Engn Shanghai 200093 Peoples R China Shanghai Jiao Tong Univ Renji Hosp Sch Med Dept Cardiovasc Surg 160 Pujian Rd Shanghai 200127 Peoples R China Soochow Univ Affiliated Hosp 1 Dept Cardiovasc Surg Suzhou 215123 Jiangsu Peoples R China Zhejiang Univ State Key Lab Extreme Photon & Instrumentat Hangzhou 310009 Peoples R China Huzhou Vocat & Tech Coll Sch Mechatron & Automot Engn Huzhou 313099 Peoples R China
In response to the current algorithm of fine-grained image classification is greatly disturbed by complex backgrounds with similar features to the objects to be classified, salient object detection is introduced into ... 详细信息
来源: 评论
Edge Devices Clustering for Federated visual classification: A Feature Norm Based Framework
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2023年 32卷 995-1010页
作者: Wei, Xiao-Xiang Huang, Hua Beijing Inst Technol Sch Comp Sci & Technol Beijing 100081 Peoples R China Beijing Normal Univ Sch Artificial Intelligence Beijing 100875 Peoples R China
Federated learning is a privacy-preserving distributed learning paradigm where multiple devices collaboratively train a model, which is applicable to edge computing environments. However, the non-IID data distributed ... 详细信息
来源: 评论
Reconciliation of statistical and spatial sparsity for robust visual classification
收藏 引用
NEUROCOMPUTING 2023年 第1期529卷 140-151页
作者: Cheng, Hao Yap, Kim-Hui Wen, Bihan Nanyang Technol Univ Sch Elect & Elect Engn Singapore 639798 Singapore
Recent image classification algorithms, by learning deep features from large-scale datasets, have achieved significantly better results comparing to the classic feature-based approaches. However, there are still vario... 详细信息
来源: 评论
U-SPDNet: An SPD manifold learning-based neural network for visual classification
收藏 引用
NEURAL NETWORKS 2023年 第1期161卷 382-396页
作者: Wang, Rui Wu, Xiao-Jun Xu, Tianyang Hu, Cong Kittler, Josef Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi 214122 Peoples R China Jiangnan Univ Jiangsu Prov Engn Lab Pattern Recognit & Computat Wuxi 214122 Peoples R China Univ Surrey Ctr Vis Speech & Signal Proc CVSSP Guildford GU2 7XH England
With the development of neural networking techniques, several architectures for symmetric positive definite (SPD) matrix learning have recently been put forward in the computer vision and pattern recognition (CV&P... 详细信息
来源: 评论
Learning Representation on Optimized High-Order Manifold for visual classification
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2022年 24卷 3989-4001页
作者: Ma, Xueqi Liu, Weifeng Tian, Qi Gao, Yue Tsinghua Univ Sch Software KLISS BNRistTHUIBCS Beijing 100084 Peoples R China Xidian Univ State Key Lab Integrated Serv Networks Xian 710126 Peoples R China China Univ Petr East China Coll Control Sci & Engn Qingdao 266580 Peoples R China Huawei Cloud & AI Shenzhen 518129 Peoples R China
Graph convolutional networks (GCNs) and graph neural networks (GNNs) have demonstrated convincing performance on many tasks by learning the intrinsic structure of the data. However, it is still valuable and challengin... 详细信息
来源: 评论
Discriminative elastic-net broad learning systems for visual classification
收藏 引用
APPLIED SOFT COMPUTING 2024年 155卷
作者: Li, Yanting Jin, Junwei Geng, Yun Xiao, Yang Liang, Jing Chen, C. L. Philip Zhengzhou Univ Light Ind Sch Comp & Commun Engn Zhengzhou 450001 Peoples R China Henan Univ Technol Key Lab Grain Informat Proc & Control Minist Educ Zhengzhou Peoples R China Henan Prov Key Lab Grain Photoelect Detect & Contr Zhengzhou Peoples R China Henan Univ Technol Sch Artificial Intelligence & Big Data Zhengzhou 450001 Peoples R China Zhengzhou Univ Sch Elect & Informat Engn Zhengzhou 450001 Peoples R China Univ Alabama Dept Comp Sci Tuscaloosa AL 35487 USA South China Univ Technol Sch Comp Sci & Engn Guangzhou Peoples R China
The broad learning system (BLS) has garnered significant attention in the realm of visual classification due to its exceptional balance between accuracy and efficiency. However, the supervision mechanism in BLS typica... 详细信息
来源: 评论
Fisher regularized discriminative broad learning system for visual classification
收藏 引用
APPLIED SOFT COMPUTING 2024年 167卷
作者: Li, Xianghua Wei, Jinlong Jin, Junwei Xu, Tao Yu, Dengxiu Northwestern Polytech Univ Sch Artificial Intelligence OPt & Elect iOPEN Xian 710072 Peoples R China Henan Univ Technol Sch Artificial Intelligence & Big Data Zhengzhou 450001 Peoples R China Northwestern Polytech Univ Unmanned Syst Res Inst Xian 710072 Peoples R China
The Broad Learning System (BLS) is an innovative learning paradigm with significant success in image classification. However, the 0-1 labeling matrix employed in BLS struggles to align with the true data distribution,... 详细信息
来源: 评论
Autolabeling-Enhanced Active Learning for Cost-Efficient Surface Defect visual classification
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2021年 70卷 1-15页
作者: Yang, Hua Song, Kaiyou Mao, Fangqin Yin, Zhouping Huazhong Univ Sci & Technol Sch Mech Sci & Engn State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Hubei Peoples R China
Active learning can reduce the human effort required for labeling training samples while preserving the performance of visual classifiers. However, existing active learning frameworks cannot be used to perform visual ... 详细信息
来源: 评论