咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 9 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 8 篇 计算机科学与技术...
    • 3 篇 电气工程
    • 3 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 生物医学工程(可授...
  • 1 篇 理学
    • 1 篇 生物学
  • 1 篇 医学
    • 1 篇 临床医学
    • 1 篇 特种医学

主题

  • 9 篇 visual concept l...
  • 2 篇 latent dirichlet...
  • 1 篇 low rank graph
  • 1 篇 relational abstr...
  • 1 篇 generative machi...
  • 1 篇 spatial arrangem...
  • 1 篇 model selection
  • 1 篇 transfer learnin...
  • 1 篇 training set con...
  • 1 篇 cost-sensitive l...
  • 1 篇 social tagging
  • 1 篇 support vector m...
  • 1 篇 semi-supervised ...
  • 1 篇 semisupervised l...
  • 1 篇 multitask learni...
  • 1 篇 multiple kernel ...
  • 1 篇 content-based im...
  • 1 篇 relevance feedba...
  • 1 篇 tag relevance le...
  • 1 篇 web images

机构

  • 1 篇 fudan univ sch c...
  • 1 篇 univ amsterdam
  • 1 篇 institute of zoo...
  • 1 篇 univ sci & techn...
  • 1 篇 eastman kodak co...
  • 1 篇 peking univ sch ...
  • 1 篇 city univ hong k...
  • 1 篇 peking univ key ...
  • 1 篇 erasmus mc dept ...
  • 1 篇 yale univ sch me...
  • 1 篇 chinese acad sci...
  • 1 篇 shanghai jiao to...
  • 1 篇 univ amsterdam f...
  • 1 篇 ustc moe ms keyn...
  • 1 篇 chinese acad sci...
  • 1 篇 leiden univ leid...
  • 1 篇 univ rochester d...
  • 1 篇 ustc sch informa...
  • 1 篇 sppu dept techno...

作者

  • 2 篇 luo jiebo
  • 2 篇 zhuang liansheng
  • 1 篇 xiong hongkai
  • 1 篇 vaidya vinay g.
  • 1 篇 leonie john
  • 1 篇 li zhenyang
  • 1 篇 yang jingjing
  • 1 篇 jiang yu-gang
  • 1 篇 ni saijie
  • 1 篇 huang jingjing
  • 1 篇 jaffe cc
  • 1 篇 zhu shiai
  • 1 篇 tian yonghong
  • 1 篇 kadam suvarna
  • 1 篇 li yuanning
  • 1 篇 ghebreab s
  • 1 篇 duan lingyu
  • 1 篇 vera schluessel
  • 1 篇 she lanbo
  • 1 篇 yu nenghai

语言

  • 9 篇 英文
检索条件"主题词=Visual Concept Learning"
9 条 记 录,以下是1-10 订阅
排序:
WEBLY-SUPERVISED visual concept learning WITH CARDINALITY GUIDED INSTANCE MINING AND CLUSTERED MULTITASK REFINEMENT
WEBLY-SUPERVISED VISUAL CONCEPT LEARNING WITH CARDINALITY GU...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Ni, Saijie Zhang, Xiaopeng Wang, Botao Xiong, Hongkai Shanghai Jiao Tong Univ Dept Elect Engn Shanghai Peoples R China
Conventional image classification and object detection methods depend on manual annotations, such as image-level labels and bounding boxes. However, the acquisition of such annotations for millions of images is trivia... 详细信息
来源: 评论
Regularized Semi-Supervised Latent Dirichlet Allocation for visual concept learning
收藏 引用
NEUROCOMPUTING 2013年 119卷 26-32页
作者: Zhuang, Liansheng Gao, Haoyuan Luo, Jiebo Lin, Zhouchen Univ Sci & Technol China Hefei 230027 Peoples R China Univ Rochester Dept Comp Sci Rochester NY 14627 USA Peking Univ Key Lab Machine Percept MOE Beijing 100871 Peoples R China
Topic model is a popular tool for visual concept learning. Most topic models are either unsupervised or fully supervised. In this paper, to take advantage of both limited labeled training images and rich unlabeled ima... 详细信息
来源: 评论
Same or different?Abstract relational concept use in juvenile bamboo sharks and Malawi cichlids
收藏 引用
Current Zoology 2021年 第3期67卷 279-292页
作者: Theodora Fuss Leonie John Vera Schluessel Institute of Zoology Rheinische Friedrich-Wilhelms-University BonnMeckenheimer Allee 169Bonn53115Germany
Sorting objects and events into categories and concepts is an important cognitive prerequisite that spares an individual the learning of every object or situation encountered in its daily ***,specific items are classi... 详细信息
来源: 评论
Sampling and Ontologically Pooling Web Images for visual concept learning
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2012年 第4期14卷 1068-1078页
作者: Zhu, Shiai Chong-Wah Ngo Jiang, Yu-Gang City Univ Hong Kong Dept Comp Sci Kowloon Hong Kong Peoples R China Fudan Univ Sch Comp Sci Shanghai 201203 Peoples R China
Sufficient training examples are essential for effective learning of semantic visual concepts. In practice, however, acquiring noise-free training examples has always been expensive. Recently the rapid popularization ... 详细信息
来源: 评论
Source Model Selection as a Meta-learning Technique to learn Novel concepts  2020
Source Model Selection as a Meta-learning Technique to learn...
收藏 引用
12th International Conference on Machine learning and Computing (ICMLC)
作者: Kadam, Suvarna Vaidya, Vinay G. SPPU Dept Technol Pune Maharashtra India
visual concept classification from a closed set has been successfully solved with supervised deep learning. However, learning a novel visual concept is challenging for deep models, especially when the concept is rare ... 详细信息
来源: 评论
Regularized Semi-supervised Latent Dirichlet Allocation for visual concept learning
Regularized Semi-supervised Latent Dirichlet Allocation for ...
收藏 引用
17th International Multimedia Modeling Conference, MMM 2011
作者: Zhuang, Liansheng She, Lanbo Huang, Jingjing Luo, Jiebo Yu, Nenghai USTC MOE MS Keynote Lab MCC Hefei 230027 Peoples R China USTC Sch Informat Sci & Technol Hefei 230027 Peoples R China Eastman Kodak Co Kodak Res Labs Rochester NY 14650 USA
Topic models are a popular tool for visual concept learning. Current topic models are either unsupervised or fully supervised. Although lots of labeled images can significantly improve the performance of topic models,... 详细信息
来源: 评论
A New Multiple Kernel Approach for visual concept learning
A New Multiple Kernel Approach for Visual Concept Learning
收藏 引用
15th International Multimedia Modeling Conference
作者: Yang, Jingjing Li, Yuanning Tian, Yonghong Duan, Lingyu Gao, Wen Chinese Acad Sci Inst Comp Technol Beijing 100080 Peoples R China Chinese Acad Sci Grad Sch Beijing 100039 Peoples R China Peking Univ Sch EE & CS Inst Digital Med Beijing 100871 Peoples R China
In this paper, we present a novel multiple kernel method to learn the optimal classification function for visual concept. Although many carefully designed kernels have been proposed in the literature to measure the vi... 详细信息
来源: 评论
Cost-sensitive learning in social image tagging: review, new ideas and evaluation
收藏 引用
INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL 2012年 第4期1卷 205-222页
作者: Li, Zhenyang Lew, Michael S. Univ Amsterdam Amsterdam Netherlands Leiden Univ Leiden Netherlands
visual concept learning typically requires a set of expert labeled, manual training images. However, acquiring a sufficient number of reliable annotations can be time-consuming or impractical. Therefore, in many situa... 详细信息
来源: 评论
Population-based incremental interactive concept learning for image retrieval by stochastic string segmentations
收藏 引用
IEEE TRANSACTIONS ON MEDICAL IMAGING 2004年 第6期23卷 676-689页
作者: Ghebreab, S Jaffe, CC Smeulders, AWM Erasmus MC Dept Radiol Biomed Imaging Grp Rotterdam NL-3015 GE Rotterdam Netherlands Yale Univ Sch Med Cardiovasc Med Sect New Haven CT 06510 USA Univ Amsterdam Fac Sci Inst Informat Intelligent Sensory Informat Syst NL-1098 SJ Amsterdam Netherlands
We propose a method for concept-based medical image retrieval that is a superset of existing semantic-based image retrieval methods. We conceive of a concept as an incremental and interactive formalization of the user... 详细信息
来源: 评论