咨询与建议

限定检索结果

文献类型

  • 42 篇 期刊文献
  • 24 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 67 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 62 篇 工学
    • 51 篇 计算机科学与技术...
    • 28 篇 电气工程
    • 8 篇 信息与通信工程
    • 5 篇 软件工程
    • 4 篇 土木工程
    • 3 篇 仪器科学与技术
    • 2 篇 电子科学与技术(可...
    • 1 篇 材料科学与工程(可...
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 交通运输工程
  • 7 篇 医学
    • 7 篇 临床医学
  • 2 篇 理学
    • 2 篇 化学
    • 2 篇 生物学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 67 篇 visual relations...
  • 19 篇 scene graph gene...
  • 12 篇 visualization
  • 10 篇 scene understand...
  • 8 篇 object detection
  • 8 篇 semantics
  • 7 篇 deep learning
  • 7 篇 task analysis
  • 7 篇 feature extracti...
  • 6 篇 computer vision
  • 5 篇 training
  • 4 篇 proposals
  • 4 篇 neural networks
  • 3 篇 graph neural net...
  • 3 篇 human-object int...
  • 3 篇 detectors
  • 3 篇 commonsense know...
  • 2 篇 transformer
  • 2 篇 message passing
  • 2 篇 graph attention ...

机构

  • 3 篇 beijing univ pos...
  • 3 篇 univ sci & techn...
  • 2 篇 xian univ techno...
  • 2 篇 cea list f-91191...
  • 2 篇 sun yat sen univ...
  • 2 篇 tsinghua univ de...
  • 2 篇 xian int univ sc...
  • 2 篇 deeplab athens 1...
  • 2 篇 sun yat sen univ...
  • 1 篇 fdn bruno kessle...
  • 1 篇 beijing inst tec...
  • 1 篇 univ calgary dep...
  • 1 篇 univ waterloo de...
  • 1 篇 chinese acad sci...
  • 1 篇 shanghai univ en...
  • 1 篇 sun yat sen univ...
  • 1 篇 shanghai univ sc...
  • 1 篇 jiangxi key lab ...
  • 1 篇 shanghai engn re...
  • 1 篇 sensetime ltd pe...

作者

  • 2 篇 liu guangyi
  • 2 篇 tao xiaoming
  • 2 篇 zhang yongdong
  • 2 篇 ginsca alexandru
  • 2 篇 zeng juan
  • 2 篇 sun shiqi
  • 2 篇 pan chengkang
  • 2 篇 xiao shouguan
  • 2 篇 maragos petros
  • 2 篇 wan hai
  • 2 篇 wang baoyi
  • 2 篇 gan ming-gang
  • 2 篇 pitsikalis vassi...
  • 2 篇 delezoide bertra...
  • 2 篇 du jianfeng
  • 2 篇 ou jialing
  • 2 篇 gkanatsios nikol...
  • 2 篇 zlatintsi athana...
  • 2 篇 koutras petros
  • 2 篇 fu weiping

语言

  • 67 篇 英文
检索条件"主题词=Visual Relationship Detection"
67 条 记 录,以下是1-10 订阅
排序:
Data-driven safety management of worker-equipment interactions using visual relationship detection and semantic analysis
收藏 引用
AUTOMATION IN CONSTRUCTION 2025年 175卷
作者: Liu, Yipeng Wang, Junwu Torbaghan, Mehran Eskandari Wuhan Univ Technol Sanya Sci & Educ Innovat Pk Sanya 572025 Peoples R China Wuhan Univ Technol Sch Civil Engn & Architecture Wuhan 430070 Peoples R China Univ Birmingham Dept Civil Engn Birmingham B15 2TT England
Existing technologies struggle to accurately identify interactions between workers and equipment, as well as the deep semantics of complex construction scenes. To address these limitations, this paper proposes an auto... 详细信息
来源: 评论
Approach to Deep-learning-based visual relationship detection for Scene Analysis
收藏 引用
SENSORS AND MATERIALS 2025年 第3期37卷 1193-1209页
作者: Shieh, Ming-Yuan Wu, Po-Kuan Pai, Neng-Sheng Natl Chin Yi Univ Technol Dept Elect Engn Taichung 41170 Taiwan
The paper is focused on the implementation of a deep-learning-based visual relationship detection system for scene analysis. Initially, the system employs convolutional neural networks (CNNs) for precise object detect... 详细信息
来源: 评论
visual relationship detection With visual-Linguistic Knowledge From Multimodal Representations
收藏 引用
IEEE ACCESS 2021年 9卷 50441-50451页
作者: Chiou, Meng-Jiun Zimmermann, Roger Feng, Jiashi Natl Univ Singapore Dept Comp Sci Singapore 117417 Singapore Natl Univ Singapore Dept Elect & Comp Engn Singapore 117583 Singapore
visual relationship detection aims to reason over relationships among salient objects in images, which has drawn increasing attention over the past few years. Inspired by human reasoning mechanisms, it is believed tha... 详细信息
来源: 评论
Knowledge Enhanced Zero-Shot visual relationship detection  1
收藏 引用
17th International Conference on Knowledge Science, Engineering and Management (KSEM)
作者: Ding, Nan Lai, Yong Liu, Jie Jilin Univ Coll Comp Sci & Technol Changchun 130012 Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Peoples R China
In visual relationship detection (VRD), the diversity of relationships often results in many unseen (i.e. zero-shot) relationships in the test set. Predicting zero-shot relationships poses a significant challenge. Tra... 详细信息
来源: 评论
Optimizing Continuous Prompts for visual relationship detection by Affix-Tuning
收藏 引用
IEEE ACCESS 2022年 10卷 70104-70112页
作者: Xiao, Shouguan Fu, Weiping Xian Univ Technol Sch Mech & Precis Instrument Engn Xian 710048 Peoples R China Xian Int Univ Sch Engn Xian 710077 Peoples R China
visual relationship detection is crucial for understanding visual scenes and is widely used in many areas, including visual navigation, visual question answering, and machine trouble detection. Traditional detection m... 详细信息
来源: 评论
Fixed-Size Objects Encoding for visual relationship detection
收藏 引用
NEURAL PROCESSING LETTERS 2022年 第4期54卷 3249-3261页
作者: Pan, Hengyue Niu, Xin Shen, Siqi Chen, Yixin Qiao, Peng Huang, Zhen Li, Dongsheng Natl Univ Def Technol 109 Deya St Changsha Hunan Peoples R China Xiamen Univ 422 Siming South Rd Xiamen Fujian Peoples R China
In this paper, we propose a fixed-size object encoding method called FOE-VRD to improve performance of visual relationship detection tasks. For each relationship triplet in a given image, FOE-VRD not only considers th... 详细信息
来源: 评论
Naive Scene Graphs : How visual is Modern visual relationship detection?  20
Naive Scene Graphs : How Visual is Modern Visual Relationshi...
收藏 引用
20th Conference on Robots and Vision (CRV)
作者: Abou Chacra, David Zelek, John Univ Waterloo Dept Syst Design Engn Waterloo ON Canada
Modern approaches to scene graph generation still struggle with their performance, with even state of the art approaches hovering under a 15% mean recall on certain evaluation modes. This poor performance is partially... 详细信息
来源: 评论
visual relationship detection with Multimodal Fusion and Reasoning
收藏 引用
SENSORS 2022年 第20期22卷 7918-7918页
作者: Xiao, Shouguan Fu, Weiping Xian Univ Technol Sch Mech & Precis Instrument Engn Xian 710048 Peoples R China Xian Int Univ Sch Engn Xian 710077 Peoples R China
visual relationship detection aims to completely understand visual scenes and has recently received increasing attention. However, current methods only use the visual features of images to train the semantic network, ... 详细信息
来源: 评论
Contextual Translation Embedding for visual relationship detection and Scene Graph Generation
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2021年 第11期43卷 3820-3832页
作者: Hung, Zih-Siou Mallya, Arun Lazebnik, Svetlana Univ Illinois Comp Sci Dept Urbana IL 61801 USA Nvidia Res Santa Clara CA 95051 USA
Relations amongst entities play a central role in image understanding. Due to the complexity of modeling (subject, predicate, object) relation triplets, it is crucial to develop a method that can not only recognize se... 详细信息
来源: 评论
Adaptively Clustering-Driven Learning for visual relationship detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2021年 23卷 4515-4525页
作者: Liu, An-An Wang, Yanhui Xu, Ning Nie, Weizhi Nie, Jie Zhang, Yongdong Tianjin Univ Sch Elect & Informat Engn Tianjin 300072 Peoples R China Ocean Univ China Coll Informat Sci & Engn Qingdao 266100 Peoples R China Univ Sci & Technol China Sch Informat Sci & Technol Hefei 230027 Peoples R China
visual relationship detection aims to describe the interactions between pairs of objects, such as person-ride-bike and bike-next to-car triplets. In reality, it is often the case that there exist some groups of strong... 详细信息
来源: 评论