Iso-surfaces or level-sets provide an effective and frequently used means for feature visualization. However, they are restricted to simple features for uni-variate data. The approach does not scale when moving to mul...
详细信息
Iso-surfaces or level-sets provide an effective and frequently used means for feature visualization. However, they are restricted to simple features for uni-variate data. The approach does not scale when moving to multi-variate data or when considering more complex feature definitions. In this paper, we introduce the concept of traits and feature level-sets, which can be understood as a generalization of level-sets as it includes iso-surfaces, and fiber surfaces as special cases. The concept is applicable to a large class of traits defined as subsets in attribute space, which can be arbitrary combinations of points, lines, surfaces and volumes. It is implemented into a system that provides an interface to define traits in an interactive way and multiple rendering options. We demonstrate the effectiveness of the approach using multi-variate data sets of different nature, including vector and tensor data, from different application domains.
Building Information Modeling (BIM) employs data-rich 3D CAD models for large-scale facility design, construction, and operation. These complex datasets contain a large amount and variety of information, ranging from ...
详细信息
Building Information Modeling (BIM) employs data-rich 3D CAD models for large-scale facility design, construction, and operation. These complex datasets contain a large amount and variety of information, ranging from design specifications to real-time sensor data. They are used by architects and engineers for various analysis and simulations throughout a facility's life cycle. Many techniques from different visualization fields could be used to analyze these data. However, the BIM domain still remains largely unexplored by the visualization community. The goal of this article is to encourage visualization researchers to increase their involvement with BIM. To this end, we present the results of a systematic review of visualization in current BIM practice. We use a novel taxonomy to identify main application areas and analyze commonly employed techniques. From this domain characterization, we highlight future research opportunities brought forth by the unique features of BIM. For instance, exploring the synergies between scientific and information visualization to integrate spatial and non-spatial data. We hope this article raises awareness to interesting new challenges the BIM domain brings to the visualization community.
Computer aided x-ray microtomography is an increasingly popular method to investigate the structure of materials. Continuing improvements in the technique are resulting in increasingly larger data sets. The analysis o...
详细信息
Computer aided x-ray microtomography is an increasingly popular method to investigate the structure of materials. Continuing improvements in the technique are resulting in increasingly larger data sets. The analysis of these data sets generally involves executing a static workflow for multiple samples and is generally performed manually by researchers. Executing these processes requires a significant time investment. A workflow which is able to automate the activities of the user would be useful. In this work, we have developed an automated workflow for the analysis of microtomography scanned bread dough data sets averaging 5GB in size. Comparing the automated workflow with the manual workflow indicates a significant amount of the time spent (33% in the case of bread dough) on user interactions in manual method. Both workflows return similar results for porosity and pore frequency distribution. Finally, by implementing an automated workflow, users save the time which would be required to manually execute the workflow. This time can be spent on more productive tasks. Lay Description Technological advances in x-ray scanning techniques have resulted in larger, more complex microtomographic datasets. Processing these datasets can be both a time consuming and oftentimes repetitive task as datasets of similar materials tend to have similar characteristics. What if there was a better way to analyze these datasets? Our research has investigated using computer programming languages instead of researchers to automatically perform tasks involved in the analysis of microtomographic datasets of ten scanned bread dough samples. Our results highlighted the benefits of using computers to automate the analysis process, demonstrating that nearly 33% of the time required is due to researchers interacting with the analysis programs and not from the analysis itself. The quantitative data provided by the automated workflow are nearly identical to results found by researchers. This resear
Functional connectivity, a flourishing new area of research in human neuroscience, carries a substantial challenge for visualization: while the end points of connectivity are known, the precise path between them is no...
详细信息
Functional connectivity, a flourishing new area of research in human neuroscience, carries a substantial challenge for visualization: while the end points of connectivity are known, the precise path between them is not. Although a large body of work already exists on the visualization of anatomical connectivity, the functional counterpart lacks similar development. To optimize the clarity of whole-brain and complex connectivity patterns in three-dimensional brain space, we develop mean-shift edge bundling, which reveals the multitude of connections as derived from correlations in the brain activity of cortical regions.
We present KelpFusion: a method for depicting set membership of items on a map or other visualization using continuous boundaries. KelpFusion is a hybrid representation that bridges hull techniques such as Bubble Sets...
详细信息
We present KelpFusion: a method for depicting set membership of items on a map or other visualization using continuous boundaries. KelpFusion is a hybrid representation that bridges hull techniques such as Bubble Sets and Euler diagrams and line-and graph-based techniques such as LineSets and Kelp Diagrams. We describe an algorithm based on shortest-path graphs to compute KelpFusion visualizations. Based on a single parameter, the shortest-path graph varies from the minimal spanning tree to the convex hull of a point set. Shortest-path graphs aim to capture the shape of a point set and smoothly adapt to sets of varying densities. KelpFusion fills enclosed faces based on a set of simple legibility rules. We present the results of a controlled experiment comparing KelpFusion to Bubble Sets and LineSets. We conclude that KelpFusion outperforms Bubble Sets both in accuracy and completion time and outperforms LineSets in completion time.
We present a new algorithm for automatic layout of clustered graphs using a circular style. The algorithm tries to determine optimal location and orientation of individual clusters intrinsically within a modified spri...
详细信息
We present a new algorithm for automatic layout of clustered graphs using a circular style. The algorithm tries to determine optimal location and orientation of individual clusters intrinsically within a modified spring embedder. Heuristics such as reversal of the order of nodes in a cluster and swap of neighboring node pairs in the same cluster are employed intermittently to further relax the spring embedder system, resulting in reduced inter-cluster edge crossings. Unlike other algorithms generating circular drawings, our algorithm does not require the quotient graph to be acyclic, nor does it sacrifice the edge crossing number of individual clusters to improve respective positioning of the clusters. Moreover, it reduces the total area required by a cluster by using the space inside the associated circle. Experimental results show that the execution time and quality of the produced drawings with respect to commonly accepted layout criteria are quite satisfactory, surpassing previous algorithms. The algorithm has also been successfully implemented and made publicly available as part of a compound and clustered graph editing and layout tool named CHISIO.
This article describes the novel datamap visualization technique which enables visualizing large datasets interactively and fairly, inspired by geographic maps and microscopes. The main contributions include introduci...
详细信息
ISBN:
(纸本)9781450319928
This article describes the novel datamap visualization technique which enables visualizing large datasets interactively and fairly, inspired by geographic maps and microscopes. The main contributions include introducing the datamap metaphor and datamap visualization architecture, specifying efficient methods of approximate rendering, and illustrating the basic concepts in terms of example applications.
Researchers analyzed and presented volume data from the Visible Human Project (VHP) and data from high-resolution 3D ion-abrasion scanning electron microscopy (IA-SEM). They acquired the VHP data using cryosectioning,...
详细信息
Researchers analyzed and presented volume data from the Visible Human Project (VHP) and data from high-resolution 3D ion-abrasion scanning electron microscopy (IA-SEM). They acquired the VHP data using cryosectioning, a destructive approach to 3D human anatomical imaging resulting in whole-body images with a field of view approaching 2 meters and a minimum resolvable feature size of 300 microns. IA-SEM is a type of block-face imaging microscopy, a destructive approach to microscopic 3D imaging of cells. The field of view of IA-SEM data is on the order of 10 microns (whole cell) with a minimum resolvable feature size of 15 nanometers (single-slice thickness). Despite the difference in subject and scale, the analysis and modeling methods were remarkably similar. They are derived from image processing, computer vision, and computer graphics techniques. Moreover, together we are employing medical illustration, visualization, and rapid prototyping to inform and inspire biomedical science. By combining graphics and biology, we are imaging across nine orders of magnitude of space to better promote public health through research. [ABSTRACT FROM AUTHOR]
We present a process to automatically generate three-dimensional mesh representations of the complex, arborized cell membrane surface of cortical neurons (the principal information processing cells of the brain) from ...
详细信息
We present a process to automatically generate three-dimensional mesh representations of the complex, arborized cell membrane surface of cortical neurons (the principal information processing cells of the brain) from nonuniform morphological measurements. Starting from manually sampled morphological points (3D points and diameters) from neurons in a brain slice preparation, we construct a polygonal mesh representation that realistically represents the continuous membrane surface, closely matching the original experimental data. A mapping between the original morphological points and the newly generated mesh enables simulations of electrophysiolgical activity to be visualized on this new membrane representation. We compare the new mesh representation with the state of the art and present a series of use cases and applications of this technique to visualize simulations of single neurons and networks of multiple neurons.
We introduce an information visualization technique, known as GreenCurve, for large multivariate sparse graphs that exhibit small-world properties. Our fractal-based design approach uses spatial cues to approximate th...
详细信息
We introduce an information visualization technique, known as GreenCurve, for large multivariate sparse graphs that exhibit small-world properties. Our fractal-based design approach uses spatial cues to approximate the node connections and thus eliminates the links between the nodes in the visualization. The paper describes a robust algorithm to order the neighboring nodes of a large sparse graph by solving the Fiedler vector of its graph Laplacian, and then fold the graph nodes into a space-filling fractal curve based on the Fiedler vector. The result is a highly compact visualization that gives a succinct overview of the graph with guaranteed visibility of every graph node. GreenCurve is designed with the power grid infrastructure in mind. It is intended for use in conjunction with other visualizationtechniques to support electric power grid operations. The research and development of GreenCurve was conducted in collaboration with domain experts who understand the challenges and possibilities intrinsic to the power grid infrastructure. The paper reports a case study on applying GreenCurve to a power grid problem and presents a usability study to evaluate the design claims that we set forth.
暂无评论