咨询与建议

限定检索结果

文献类型

  • 2 篇 会议
  • 1 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 信息与通信工程
    • 2 篇 软件工程
  • 1 篇 理学
    • 1 篇 数学

主题

  • 3 篇 web datasets
  • 1 篇 noise measuremen...
  • 1 篇 training data
  • 1 篇 overfitting
  • 1 篇 history
  • 1 篇 semantic markup
  • 1 篇 fine-grained rec...
  • 1 篇 noise
  • 1 篇 adaboost
  • 1 篇 visualization
  • 1 篇 ensemble learnin...
  • 1 篇 feature extracti...
  • 1 篇 uncertainly-base...
  • 1 篇 uncertainty
  • 1 篇 dataset relation...
  • 1 篇 global sample se...
  • 1 篇 training
  • 1 篇 zero_one_loss
  • 1 篇 boosting

机构

  • 1 篇 google research ...
  • 1 篇 univ tehran coll...
  • 1 篇 nanjing univ sci...

作者

  • 1 篇 shabankhah mahmo...
  • 1 篇 lin kate
  • 1 篇 noy natasha
  • 1 篇 lu jianfeng
  • 1 篇 zhang haofeng
  • 1 篇 modarres zainab ...
  • 1 篇 liu huafeng
  • 1 篇 tang zhenmin
  • 1 篇 kamandi ali
  • 1 篇 alrashed tarfah

语言

  • 3 篇 英文
检索条件"主题词=Web Datasets"
3 条 记 录,以下是1-10 订阅
排序:
Relationships Are Complicated! An Analysis of Relationships Between datasets on the web  23rd
Relationships Are Complicated! An Analysis of Relationships...
收藏 引用
23rd International Semantic web Conference, ISWC 2024
作者: Lin, Kate Alrashed, Tarfah Noy, Natasha Google Research Google San Francisco United States
The web today has millions of datasets, and the number of datasets continues to grow at a rapid pace. These datasets are not standalone entities;rather, they are intricately connected through complex relationships. Se... 详细信息
来源: 评论
Exploiting web Images for Fine-Grained Visual Recognition via Dynamic Loss Correction and Global Sample Selection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2022年 24卷 1105-1115页
作者: Liu, Huafeng Zhang, Haofeng Lu, Jianfeng Tang, Zhenmin Nanjing Univ Sci & Technol Sch Comp Sci & Engn Nanjing Peoples R China
To distinguish subtle differences among fine-grained categories, a large amount of well-labeled images are typically required. However, acquiring manual annotations for fine-grained categories is an extremely difficul... 详细信息
来源: 评论
Making AdaBoost Less Prone to Overfitting on Noisy datasets  6
Making AdaBoost Less Prone to Overfitting on Noisy Datasets
收藏 引用
6th International Conference on web Research (ICWR)
作者: Modarres, Zainab Ghadiri Shabankhah, Mahmood Kamandi, Ali Univ Tehran Coll Engn Sch Engn Sci Tehran Iran
AdaBoost is perhaps one of the most well-known ensemble learning algorithms. In simple terms, the idea in AdaBoost is to train a number of weak learners in an increamental fashion where each new learner tries to focus... 详细信息
来源: 评论