咨询与建议

限定检索结果

文献类型

  • 20 篇 期刊文献
  • 16 篇 会议

馆藏范围

  • 36 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 23 篇 计算机科学与技术...
    • 19 篇 电气工程
    • 5 篇 软件工程
    • 3 篇 电子科学与技术(可...
    • 3 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 1 篇 仪器科学与技术
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 4 篇 理学
    • 3 篇 数学
    • 1 篇 化学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...

主题

  • 36 篇 winograd algorit...
  • 6 篇 fpga
  • 5 篇 convolutional ne...
  • 4 篇 convolution
  • 3 篇 strassen algorit...
  • 3 篇 fast convolution
  • 3 篇 conflict-free ad...
  • 3 篇 matrix multiplic...
  • 3 篇 convolutional ne...
  • 2 篇 uniform template...
  • 2 篇 accelerator
  • 2 篇 computer archite...
  • 2 篇 fpga acceleratio...
  • 2 篇 optimization
  • 2 篇 cnn
  • 2 篇 prime factor alg...
  • 2 篇 memory-based fft...
  • 2 篇 hardware acceler...
  • 2 篇 lte
  • 2 篇 3d cnn

机构

  • 2 篇 xi an jiao tong ...
  • 2 篇 cochin univ sci ...
  • 1 篇 univ sci & techn...
  • 1 篇 university of sc...
  • 1 篇 shanghai jiao to...
  • 1 篇 department of co...
  • 1 篇 georgia inst tec...
  • 1 篇 natl taipei univ...
  • 1 篇 lab efficient ar...
  • 1 篇 department of in...
  • 1 篇 univ chinese aca...
  • 1 篇 cybernetics inst...
  • 1 篇 natl univ def te...
  • 1 篇 xi an jiao tong ...
  • 1 篇 sun yat sen univ...
  • 1 篇 sun yat sen univ...
  • 1 篇 alibaba damo aca...
  • 1 篇 chinese acad sci...
  • 1 篇 peking univ ctr ...
  • 1 篇 southeast univ c...

作者

  • 3 篇 zhang chunyuan
  • 2 篇 shen junzhong
  • 2 篇 wu bin
  • 2 篇 xiong tao
  • 2 篇 luo guojie
  • 2 篇 kala s.
  • 2 篇 wen mei
  • 2 篇 meng yishuo
  • 2 篇 huang you
  • 2 篇 shi bizhao
  • 2 篇 wang jianfei
  • 2 篇 xiang siwei
  • 2 篇 yang chen
  • 2 篇 nalesh s.
  • 2 篇 wang zelong
  • 1 篇 meng xiangyu
  • 1 篇 kaporin i
  • 1 篇 ye huafeng
  • 1 篇 liu xinheng
  • 1 篇 mei kuizhi

语言

  • 34 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"主题词=Winograd algorithm"
36 条 记 录,以下是1-10 订阅
排序:
winograd algorithm for 3D Convolution Neural Networks  26th
Winograd Algorithm for 3D Convolution Neural Networks
收藏 引用
26th International Conference on Artificial Neural Networks (ICANN)
作者: Wang, Zelong Lan, Qiang He, Hongjun Zhang, Chunyuan Natl Univ Def Technol Dept Comp Sci Changsha 410003 Hunan Peoples R China
Three-dimensional convolution neural networks (3D CNN) have achieved great success in many computer vision applications, such as video analysis, medical image classification, and human action recognition. However, the... 详细信息
来源: 评论
Work-in-Progress: WinoNN: Optimising FPGA-based Neural Network Accelerators using Fast winograd algorithm
Work-in-Progress: WinoNN: Optimising FPGA-based Neural Netwo...
收藏 引用
ACM/IEEE International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)
作者: Wang, Xuan Wang, Chao Zhou, Xuehai Univ Sci & Technol China Sch Comp Sci & Technol Hefei Peoples R China
In this paper, we present WinoNN, which utilizes fast winograd algorithm to optimize FPGA-based neural network accelerators. In particular, winograd algorithm effectively reduces the resource occupation of FPGA, as we... 详细信息
来源: 评论
Unified energy-efficient reconfigurable MAC for dynamic Convolutional Neural Network based on winograd algorithm
收藏 引用
MICROPROCESSORS AND MICROSYSTEMS 2022年 93卷
作者: Yang, Dong-Sheng Xu, Chong-Hao Ruan, Shanq-Jang Huang, Chun-Ming Natl Taiwan Univ Sci & technol Comp Engn Coll Elect Engn & Comp Sci Dept Elect Taipei Taiwan Natl Appl Res Labs Taiwan Semicond Res Inst Taipei Taiwan
There has been a dramatic proliferation of research concerned with Convolutional Neural Networks (CNNs) over the past decade. In the field of smart surveillance, multi-channel frames need to be processed simultaneousl... 详细信息
来源: 评论
WinoNN: optimising FPGA-based neural network accelerators using fast winograd algorithm (work-in-progress)  18
WinoNN: optimising FPGA-based neural network accelerators us...
收藏 引用
Proceedings of the International Conference on Hardware/Software Codesign and System Synthesis
作者: Xuan Wang Chao Wang Xuehai Zhou University of Science and Technology of China Hefei China
In this paper, we present WinoNN, which utilizes fast winograd algorithm to optimize FPGA-based neural network accelerators. In particular, winograd algorithm effectively reduces the resource occupation of FPGA, as we... 详细信息
来源: 评论
APW: Asymmetric Padded winograd to Reduce Thread Divergence for Computational Efficiency on SIMT Architecture
收藏 引用
IEICE Transactions on Information and Systems 2025年 第5期E108.D卷 436-439页
作者: Lee, Wonho Kwak, Jong Wook Yeungnam University Korea Republic of
In this letter, we propose Asymmetric Padded winograd called APW, designed to enhance the computational efficiency of winograd-based convolution algorithms on SIMT architectures. This approach resolves thread divergen... 详细信息
来源: 评论
VLSI ARCHITECTURE FOR THE winograd FOURIER-TRANSFORM algorithm
MICROPROCESSING AND MICROPROGRAMMING
收藏 引用
MICROPROCESSING AND MICROPROGRAMMING 1994年 第9期40卷 605-616页
作者: GOPAL, B MANOHAR, S INDIAN INST SCI DEPT COMP SCI & AUTOMATBANGALORE 560012KARNATAKAINDIA INDIAN INST SCI CTR SUPERCOMP EDUC & RESBANGALORE 560012KARNATAKAINDIA
A simple systolic architecture for the computation of the DFT using the winograd Fourier Transform algorithm is presented. The architecture is shown to be problem-size independent and to satisfy the limited bandwidth ... 详细信息
来源: 评论
Toward an Efficient Deep Pipelined Template-Based Architecture for Accelerating the Entire 2-D and 3-D CNNs on FPGA
收藏 引用
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 2020年 第7期39卷 1442-1455页
作者: Shen, Junzhong Huang, You Wen, Mei Zhang, Chunyuan Natl Univ Def Technol Coll Comp Changsha 410073 Peoples R China
3-D convolutional neural networks (3-D CNNs) are used efficiently in many computer vision applications. Most previous work in this area has concentrated only on design and optimization of accelerators for 2-D CNNs, wi... 详细信息
来源: 评论
A tile-fusion method for accelerating winograd convolutions
收藏 引用
NEUROCOMPUTING 2021年 460卷 9-19页
作者: Ji, Zeyu Zhang, Xingjun Wei, Zheng Li, Jingbo Wei, Jia Xi An Jiao Tong Univ Sch Comp Sci & Technol Xian 710049 Peoples R China
Compared with fast convolution methods such as im2col and the fast Fourier transform, winograd-based convolution, which has been widely applied to accelerate convolutional neural networks (CNNs), can provide high perf... 详细信息
来源: 评论
Error Analysis and Improving the Accuracy of winograd Convolution for Deep Neural Networks
收藏 引用
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE 2020年 第4期46卷 37-37页
作者: Barabasz, Barbara Anderson, Andrew Soodhalter, Kirk M. Gregg, David Trinity Coll Dublin Sch Comp & Stat Dublin 2 Ireland Trinity Coll Dublin Sch Math Dublin 2 Ireland
Popular deep neural networks (DNNs) spend the majority of their execution time computing convolutions. The winograd family of algorithms can greatly reduce the number of arithmetic operations required and is used in m... 详细信息
来源: 评论
WRA-SS: A High-Performance Accelerator Integrating winograd With Structured Sparsity for Convolutional Neural Networks
收藏 引用
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2024年 第1期32卷 164-177页
作者: Yang, Chen Meng, Yishuo Xi, Jiawei Xiang, Siwei Wang, Jianfei Mei, Kuizhi Xi An Jiao Tong Univ Sch Microelect Xian 710049 Shaanxi Peoples R China
Sparsification for convolutional neural networks (CNNs) and convolution acceleration algorithms such as the winograd algorithm are two efficient ways to reduce the intensive computations of existing CNNs. To better co... 详细信息
来源: 评论