In this correspondence, we study the statistical stability properties of p(m)-periodic binary sequences in terms of their linear complexity and k-error linear complexity, where 1) is a prime number and 2 is a primitiv...
详细信息
In this correspondence, we study the statistical stability properties of p(m)-periodic binary sequences in terms of their linear complexity and k-error linear complexity, where 1) is a prime number and 2 is a primitive root modulo p(2). We show that their linear complexity and k-error linear complexity take a value only from some specific ranges. We then present the minimum value k for which the k-error linear complexity is strictly less than the linear complexity in a new viewpoint different from the approach by Meidl. We also derive the distribution of p(m)-periodic binary sequences with specific k-error linear complexity. Finally, we get an explicit formula for the expectation value of the k-error linear complexity and give its lower and upper bounds, when k <= [p/2].
暂无评论