咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 10 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 23 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 22 篇 工学
    • 20 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 电子科学与技术(可...
  • 4 篇 理学
    • 3 篇 物理学
    • 1 篇 数学
  • 3 篇 医学
    • 3 篇 临床医学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 23 篇 zero-shot object...
  • 6 篇 zero-shot learni...
  • 3 篇 object detection
  • 3 篇 contrastive lear...
  • 2 篇 semantic embeddi...
  • 2 篇 deep learning
  • 2 篇 open-vocabulary ...
  • 2 篇 supervised contr...
  • 1 篇 multi-label clas...
  • 1 篇 personal protect...
  • 1 篇 textual descript...
  • 1 篇 loss function
  • 1 篇 external knowled...
  • 1 篇 transfer-learnin...
  • 1 篇 task analysis
  • 1 篇 generative model
  • 1 篇 proposals
  • 1 篇 cross-domain obj...
  • 1 篇 transformers
  • 1 篇 large language m...

机构

  • 2 篇 ningbo univ fac ...
  • 2 篇 univ chinese aca...
  • 2 篇 chinese acad sci...
  • 1 篇 shenzhen anker i...
  • 1 篇 fudan univ sch c...
  • 1 篇 china univ min &...
  • 1 篇 beijing zhuoshiz...
  • 1 篇 univ connecticut...
  • 1 篇 xidian univ sch ...
  • 1 篇 cruise llc sunny...
  • 1 篇 technol innovat ...
  • 1 篇 univ calif irvin...
  • 1 篇 mohamed bin zaye...
  • 1 篇 carleton univ sc...
  • 1 篇 univ technol syd...
  • 1 篇 univ chinese aca...
  • 1 篇 beijing univ tec...
  • 1 篇 southern univ sc...
  • 1 篇 fudan univ shang...
  • 1 篇 hefei comprehens...

作者

  • 3 篇 li haohe
  • 3 篇 wang chong
  • 2 篇 shi hongbo
  • 2 篇 tao yang
  • 2 篇 tan shuai
  • 2 篇 zheng ye
  • 2 篇 song bing
  • 2 篇 dai xinmiao
  • 2 篇 cui li
  • 2 篇 lv wen
  • 1 篇 tan min
  • 1 篇 song mingli
  • 1 篇 huang qihan
  • 1 篇 tan yifan
  • 1 篇 men aidong
  • 1 篇 chang xiaojun
  • 1 篇 chen ruimin
  • 1 篇 huo zheng
  • 1 篇 gong zhi
  • 1 篇 song jie

语言

  • 23 篇 英文
检索条件"主题词=Zero-Shot Object Detection"
23 条 记 录,以下是1-10 订阅
排序:
zero-shot object detection with contrastive semantic association network
收藏 引用
APPLIED INTELLIGENCE 2023年 第24期53卷 30056-30068页
作者: Li, Haohe Wang, Chong Liu, Weijie Gong, Yilin Dai, Xinmiao Ningbo Univ Fac Elect Engn & Comp Sci Ningbo 315000 Zhejiang Peoples R China Shenzhen Anker Innovat Informat & Control Engn Shenzhen 518055 Guangdong Peoples R China
zero-shot object detection (ZSD) is dedicated to the task of precisely localizing and identifying unfamiliar objects that have not been encountered before. In this paper, a contrastive semantic association network is ... 详细信息
来源: 评论
zero-shot object detection for Infrared Images Using Pre-trained Vision and Language Models  50
Zero-shot Object Detection for Infrared Images Using Pre-tra...
收藏 引用
Conference on Infrared Technology and Applications L
作者: Miwa, shotaro Otsubo, Shun Jia, Qu Susumu, Yasuaki Mitsubishi Electr Corp 8-1-1 Tsukaguchi Honmachi Amagasaki Hyogo Japan
Computer vision systems, such as object detection, traditionally rely on supervised learning and predetermined categories, an approach facing limitations when applied to infrared images due to dataset constraints. Eme... 详细信息
来源: 评论
zero-shot object detection WITH PARTITIONED CONTRASTIVE FEATURE ALIGNMENT  49
ZERO-SHOT OBJECT DETECTION WITH PARTITIONED CONTRASTIVE FEAT...
收藏 引用
49th IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Li, Haohe Wang, Chong Yu, Shenghao Huo, Zheng Zheng, Yujie Qian, Liangbo Ningbo Univ Fac Elect Engn & Comp Sci Ningbo Zhejiang Peoples R China
How to properly align the extracted visual features with certain semantic embeddings of unseen objects is crucial to the problem of zero-shot object detection (ZSD). To give a better guess of those unseen visual featu... 详细信息
来源: 评论
Enhancing zero-shot object detection with external knowledge-guided robust contrast learning
收藏 引用
PATTERN RECOGNITION LETTERS 2024年 185卷 152-159页
作者: Duan, Lijuan Liu, Guangyuan En, Qing Liu, Zhaoying Gong, Zhi Ma, Bian Beijing Univ Technol Beijing Key Lab Trusted Comp Beijing 100124 Peoples R China Beijing Univ Technol Natl Engn Lab Crit Technol Informat Secur Classifi Beijing 100124 Peoples R China Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Carleton Univ Sch Comp Sci Ottawa ON K1S 5B6 Canada
zero-shot object detection aims to identify objects from unseen categories not present during training. Existing methods rely on category labels to create pseudo-features for unseen categories, but they face limitatio... 详细信息
来源: 评论
M-RRFS: A Memory-Based Robust Region Feature Synthesizer for zero-shot object detection
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2024年 第10期132卷 4651-4672页
作者: Huang, Peiliang Zhang, Dingwen Cheng, De Han, Longfei Zhu, Pengfei Han, Junwei Northwestern Polytech Univ Sch Automat Xian Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China Xidian Univ Sch Telecommun Engn Xian Peoples R China Beijing Technol & Business Univ Sch Comp & Artificial Intelligence Beijing Peoples R China Tianjin Univ Coll Intelligence & Comp Tianjin Peoples R China
With the goal to detect both the object categories appearing in the training phase and those never have been observed before testing, zero-shot object detection (ZSD) becomes a challenging yet anticipated task in the ... 详细信息
来源: 评论
Semantics-Guided Contrastive Network for zero-shot object detection
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2024年 第3期46卷 1530-1544页
作者: Yan, Caixia Chang, Xiaojun Luo, Minnan Liu, Huan Zhang, Xiaoqin Zheng, Qinghua Xi An Jiao Tong Univ Sch Elect & Informat Engn Key Lab Intelligent Networks & Network Secur Minist EducNatl Engn Lab Big Data Analyt Xian 710049 Shaanxi Peoples R China Univ Technol Sydney Fac Engn & Informat Technol ReLER Lab AAAI Ultimo NSW 2007 Australia RMIT Univ Sch Comp Technol Melbourne Vic 3000 Australia Wenzhou Univ Coll Comp Sci & Artificial Intelligence Wenzhou 325000 Zhejiang Peoples R China
zero-shot object detection (ZSD), the task that extends conventional detection models to detecting objects from unseen categories, has emerged as a new challenge in computer vision. Most existing approaches tackle the... 详细信息
来源: 评论
zero-shot object detection Through Vision-Language Embedding Alignment  22
Zero-shot Object Detection Through Vision-Language Embedding...
收藏 引用
22nd IEEE International Conference on Data Mining (ICDM)
作者: Xie, Johnathan Zheng, Shuai Stanford Univ Stanford CA 94305 USA Cruise LLC Sunnyvale CA USA
Recent approaches have shown that training deep neural networks directly on large-scale image-text pair collections enables zero-shot transfer on various recognition tasks. One central issue is how this can be general... 详细信息
来源: 评论
Adaptive adjustment with semantic embedding for zero-shot object detection
收藏 引用
JOURNAL OF ELECTRONIC IMAGING 2023年 第3期32卷 033001-033001页
作者: Lv, Wen Shi, Hongbo Tan, Shuai Song, Bing Tao, Yang East China Univ Sci & Technol Control Sci & Engn Shanghai Peoples R China
Traditional zero-shot object-detection algorithms detect images of untrained classes in the model with the help of semantic embedding. However, these approaches may perform poorly due to the limitations of fixed seman... 详细信息
来源: 评论
A dynamic semantic knowledge graph for zero-shot object detection
收藏 引用
VISUAL COMPUTER 2023年 第10期39卷 4513-4527页
作者: Lv, Wen Shi, Hongbo Tan, Shuai Song, Bing Tao, Yang East China Univ Sci & Technol Minist Educ Key Lab Smart Mfg Energy Chem Proc Shanghai 200237 Peoples R China
zero-shot object detection (ZSD) learns a mapping relationship between visual space and semantic space;therefore, ZSD can rely on semantic information to identify and localize novel classes. However, due to the variet... 详细信息
来源: 评论
Synthetic Feature Assessment for zero-shot object detection
Synthetic Feature Assessment for Zero-Shot Object Detection
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Dai, Xinmiao Wang, Chong Li, Haohe Lin, Sunqi Dong, Li Wu, Jiafei Wang, Jun Ningbo Univ Ningbo Peoples R China SenseTime Res Shenzhen Peoples R China China Univ Min & Technol Xuzhou Jiangsu Peoples R China
zero-shot object detection aims to simultaneously identify and localize classes that were not presented during training. Many generative model-based methods have shown promising performance by synthesizing the visual ... 详细信息
来源: 评论