咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 a bayesian infer...
  • 1 篇 parameter uncert...
  • 1 篇 over one million...
  • 1 篇 dimensions
  • 1 篇 model uncertaint...
  • 1 篇 curse of dimensi...
  • 1 篇 variance covaria...
  • 1 篇 large sizes
  • 1 篇 bayesian inferen...
  • 1 篇 parameter space ...
  • 1 篇 inverse method
  • 1 篇 uncertainty
  • 1 篇 bayesian inferen...
  • 1 篇 plant uncertain
  • 1 篇 supercomputer
  • 1 篇 core

机构

  • 1 篇 institute for co...

作者

  • 1 篇 omar ghattas
  • 1 篇 georg stadler
  • 1 篇 lucas c. wilcox
  • 1 篇 carsten burstedd...
  • 1 篇 tan bui-thanh
  • 1 篇 james martin

语言

  • 1 篇 英文
检索条件"主题词=a Bayesian inference framework"
1 条 记 录,以下是1-10 订阅
排序:
Extreme-Scale UQ for bayesian Inverse Problems Governed by PDEs  12
Extreme-Scale UQ for Bayesian Inverse Problems Governed by P...
收藏 引用
ACM/IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis
作者: Tan Bui-Thanh Carsten Burstedde Omar Ghattas James Martin Georg Stadler Lucas C. Wilcox Institute for Computational Engineering and Sciences (ICES) The University of Texas at Austin Austin TX
Quantifying uncertainties in large-scale simulations has emerged as the central challenge facing CS&E. When the simulations require supercomputers, and uncertain parameter dimensions are large, conventional UQ met... 详细信息
来源: 评论