咨询与建议

限定检索结果

文献类型

  • 13 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 16 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 工学
    • 9 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 控制科学与工程
    • 2 篇 软件工程
    • 1 篇 信息与通信工程
    • 1 篇 核科学与技术
  • 5 篇 理学
    • 5 篇 数学
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 16 篇 accelerated algo...
  • 3 篇 distributed opti...
  • 2 篇 proximal algorit...
  • 2 篇 convergence
  • 2 篇 sparse learning
  • 2 篇 optimization
  • 2 篇 iterative/recurs...
  • 2 篇 diffusion
  • 2 篇 estimation
  • 2 篇 monte carlo
  • 2 篇 lower bounds
  • 1 篇 phase transition...
  • 1 篇 underestimate se...
  • 1 篇 stochastic
  • 1 篇 productivity
  • 1 篇 computational co...
  • 1 篇 nonsmooth optimi...
  • 1 篇 load balancing
  • 1 篇 saddle-point pro...
  • 1 篇 geochemical appl...

机构

  • 2 篇 ras inst informa...
  • 2 篇 hse univ moscow
  • 1 篇 univ canterbury ...
  • 1 篇 jsc vniinm mosco...
  • 1 篇 department of el...
  • 1 篇 st petersburg st...
  • 1 篇 univ colorado bo...
  • 1 篇 univ bologna dep...
  • 1 篇 mohamed bin zaye...
  • 1 篇 issy les mouline...
  • 1 篇 univ michigan de...
  • 1 篇 politecn torino ...
  • 1 篇 univ canterbury ...
  • 1 篇 inst natl rech i...
  • 1 篇 st petersburg st...
  • 1 篇 moscow inst phys...
  • 1 篇 univ delaware de...
  • 1 篇 king abdullah un...
  • 1 篇 univ north texas...
  • 1 篇 rice univ housto...

作者

  • 2 篇 gasnikov alexand...
  • 2 篇 tappenden rachae...
  • 2 篇 takac martin
  • 2 篇 borodich ekateri...
  • 1 篇 diego regruto
  • 1 篇 regruto diego
  • 1 篇 chezhegov saveli...
  • 1 篇 nesterov yurii
  • 1 篇 sivak a. b.
  • 1 篇 ochoa daniel e.
  • 1 篇 lin claire yilin
  • 1 篇 perruchet c
  • 1 篇 doikov nikita
  • 1 篇 kovalev dmitry
  • 1 篇 vlachos dionisio...
  • 1 篇 kia solmaz s.
  • 1 篇 juditsky anatoli
  • 1 篇 sadiev abdurakhm...
  • 1 篇 fosson sophie m.
  • 1 篇 dvinskikh darina

语言

  • 14 篇 英文
  • 2 篇 其他
检索条件"主题词=accelerated algorithms"
16 条 记 录,以下是1-10 订阅
排序:
Lower bounds and accelerated algorithms for bilevel optimization
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2023年 第1期24卷 795-850页
作者: Kaiyi Ji Yingbin Liang Department of Computer Science and Engineering University at Buffalo Buffalo NY Department of Electrical and Computer Engineering The Ohio State University Columbus OH
Bilevel optimization has recently attracted growing interests due to its wide applications in modern machine learning problems. Although recent studies have characterized the convergence rate for several such popular ... 详细信息
来源: 评论
An overview of spatial microscopic and accelerated kinetic Monte Carlo methods
收藏 引用
JOURNAL OF COMPUTER-AIDED MATERIALS DESIGN 2007年 第2期14卷 253-308页
作者: Chatterjee, Abhijit Vlachos, Dionisios G. Univ Delaware Dept Chem Engn Newark DE 19716 USA Univ Delaware Ctr Catalyt Sci & Technol Newark DE 19716 USA
The microscopic spatial kinetic Monte Carlo (KMC) method has been employed extensively in materials modeling. In this review paper, we focus on different traditional and multiscale KMC algorithms, challenges associate... 详细信息
来源: 评论
Fast and safe: accelerated gradient methods with optimality certificates and underestimate sequences
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2021年 第2期79卷 369-404页
作者: Jahani, Majid Gudapati, Naga Venkata C. Ma, Chenxin Tappenden, Rachael Takac, Martin Lehigh Univ Dept Syst & Ind Engn HS Mohler Lab 200 West Packer Ave Bethlehem PA 18015 USA Univ Bologna Dept Elect Elect & Informat Engn Viale Risorgimento 2 I-40136 Bologna Italy Univ Canterbury Sch Math & Stat Private Bag 4800 Christchurch 8140 New Zealand
In this work we introduce the concept of an Underestimate Sequence (UES), which is motivated by Nesterov's estimate sequence. Our definition of a UES utilizes three sequences, one of which is a lower bound (or und... 详细信息
来源: 评论
accelerated Monte Carlo method for calculation of sink strengths of absorbing surfaces for 3-D migrating particles in crystals of the cubic system
收藏 引用
JOURNAL OF NUCLEAR MATERIALS 2020年 第0期531卷 152006-000页
作者: Sivak, A. B. Sivak, P. A. Chernov, V. M. Natl Res Ctr Kurchatov Inst 1 Akad Kurchatova Pl Moscow 123182 Russia JSC VNIINM Moscow Russia
An accelerated (compared to the standard "residence-time" algorithm) Monte Carlo method for the calculation of the sink strengths of absorbing surfaces for particles in crystals of the cubic system has been ... 详细信息
来源: 评论
HIGH-ORDER OPTIMIZATION METHODS FOR FULLY COMPOSITE PROBLEMS
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2022年 第3期32卷 2402-2427页
作者: Doikov, Nikita Nesterov, Yurii Catholic Univ Louvain UCL Inst Informat & Commun Technol Elect & Appl Math B-1348 Louvain La Neuve Belgium Catholic Univ Louvain UCL CORE B-1348 Louvain La Neuve Belgium
In this paper, we study a fully composite formulation of convex optimization problems, which includes, as a particular case, the problems with functional constraints, max-type minimization problems, and problems with ... 详细信息
来源: 评论
accelerated Decentralized Load Balancing in Multi-Agent Networks
收藏 引用
IEEE ACCESS 2024年 12卷 161954-161967页
作者: Erofeeva, Victoria Granichin, Oleg Volodina, Elena St Petersburg State Univ Ctr Artificial Intelligence & Data Sci St Petersburg 199034 Russia St Petersburg State Univ Fac Math & Mech St Petersburg 199034 Russia
Decentralized load balancers are gaining in popularity because they offer scalability, resilience, and the ability to handle high-demand workloads in distributed network systems. In practice, decentralized algorithms ... 详细信息
来源: 评论
A Study on Accelerating Average Consensus algorithms Using Delayed Feedback
收藏 引用
IEEE TRANSACTIONS ON CONTROL OF NETWORK SYSTEMS 2023年 第1期10卷 157-168页
作者: Moradian, Hossein Kia, Solmaz S. Univ Calif Irvine Dept Mech & Aerosp Engn Irvine CA 92697 USA
This article studies accelerating a Laplacian-based dynamic average consensus algorithm by splitting the conventional delay-free disagreement feedback into a weighted summation of current and outdated terms. When dete... 详细信息
来源: 评论
Efficient Dynamic Parallel MRI Reconstruction for the Low-Rank Plus Sparse Model
收藏 引用
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING 2019年 第1期5卷 17-26页
作者: Lin, Claire Yilin Fessler, Jeffrey A. Univ Michigan Dept Math Ann Arbor MI 48109 USA Univ Michigan Dept Elect Engn & Comp Sci Ann Arbor MI 48109 USA
The low-rank plus sparse (L+S) decomposition model enables the reconstruction of undersampled dynamic parallel magnetic resonance imaging data. Solving for the low rank and the sparse components involves nonsmooth com... 详细信息
来源: 评论
CONSTRAINED AGGLOMERATIVE HIERARCHICAL-CLASSIFICATION
收藏 引用
PATTERN RECOGNITION 1983年 第2期16卷 213-217页
作者: PERRUCHET, C Issy les Moulineaux France
This paper presents a method of classification taking account of a contiguity constraint. This procedure is applicable to all data sets represented in two distinct spaces, one of which is defined by the introduction o... 详细信息
来源: 评论
accelerated STOCHASTIC APPROXIMATION
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 1993年 第4期3卷 868-881页
作者: Delyon, Bernard Juditsky, Anatoli Inst Natl Rech Informat & Automat Inst Rech Informat & Syst Aleatoires F-35042 Rennes France
A technique to accelerate convergence of stochastic approximation algorithms is studied. It is based on Kesten's idea of equalization of the gain coefficient for the Robbins-Monro algorithm. Convergence with proba... 详细信息
来源: 评论