咨询与建议

限定检索结果

文献类型

  • 11 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 9 篇 理学
    • 7 篇 数学
    • 2 篇 物理学
    • 2 篇 统计学(可授理学、...
    • 1 篇 化学
  • 8 篇 工学
    • 5 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 船舶与海洋工程
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 12 篇 accelerated prox...
  • 3 篇 matrix completio...
  • 3 篇 convergence
  • 3 篇 convex optimizat...
  • 2 篇 nuclear norm min...
  • 2 篇 empirical risk m...
  • 2 篇 alternating dire...
  • 2 篇 kurdyka-lojasiew...
  • 1 篇 non-synchronous ...
  • 1 篇 microphone array
  • 1 篇 kernel smoothing...
  • 1 篇 iteration-comple...
  • 1 篇 proximal point m...
  • 1 篇 line search
  • 1 篇 informative miss...
  • 1 篇 face recognition
  • 1 篇 variance reducti...
  • 1 篇 nonconvex penalt...
  • 1 篇 high-dimensional...
  • 1 篇 optimal gradient...

机构

  • 2 篇 xian univ posts ...
  • 2 篇 xidian univ sch ...
  • 1 篇 univ complutense...
  • 1 篇 imperial coll lo...
  • 1 篇 simon fraser uni...
  • 1 篇 univ complutense...
  • 1 篇 univ iowa tippie...
  • 1 篇 inria saclay xpo...
  • 1 篇 northwestern pol...
  • 1 篇 microsoft res ma...
  • 1 篇 singapore mit al...
  • 1 篇 xidian univeris ...
  • 1 篇 arizona state un...
  • 1 篇 xiamen univ sch ...
  • 1 篇 shenyang aerosp ...
  • 1 篇 natl univ singap...
  • 1 篇 ecole normale su...
  • 1 篇 natl univ singap...
  • 1 篇 chinese acad sci...
  • 1 篇 sorbonne univ la...

作者

  • 2 篇 liu hongwei
  • 2 篇 wang ting
  • 1 篇 li baoqing
  • 1 篇 wang kai
  • 1 篇 hu jinglong
  • 1 篇 wang cheng
  • 1 篇 pardo maria del ...
  • 1 篇 yang zhuang
  • 1 篇 josse julie
  • 1 篇 lu yue
  • 1 篇 boyer claire
  • 1 篇 liu yong-jin
  • 1 篇 ye jieping
  • 1 篇 toh kim-chuan
  • 1 篇 li jonathan
  • 1 篇 lu zhaosong
  • 1 篇 hovhannisyan vah...
  • 1 篇 zhou zhangjin
  • 1 篇 hu yao
  • 1 篇 zhang zhemin

语言

  • 11 篇 英文
  • 1 篇 其他
检索条件"主题词=accelerated proximal gradient method"
12 条 记 录,以下是1-10 订阅
排序:
accelerated proximal gradient method with Line Search for Large-Scale Nonconvex Penalty Problems  19
Accelerated Proximal Gradient Method with Line Search for La...
收藏 引用
4th International Conference on Big Data and Computing (ICBDC)
作者: Wu, Zhongming Wang, Kai Zhou, Zhangjin Southeast Univ Sch Econ & Management Nanjing Peoples R China Nanjing Univ Sci & Technol Sch Sci Nanjing Peoples R China
In this paper, we propose an accelerated proximal gradient method with line search for solving the large-scale nonconvex penalty problems. Compared with the classic proximal gradient method, the new method does not ne... 详细信息
来源: 评论
A nonmonotone accelerated proximal gradient method with variable stepsize strategy for nonsmooth and nonconvex minimization problems
收藏 引用
JOURNAL OF GLOBAL OPTIMIZATION 2024年 第4期89卷 863-897页
作者: Liu, Hongwei Wang, Ting Liu, Zexian Xidian Univ Sch Math & Stat Xian 710126 Peoples R China Xian Univ Posts & Telecommun Sch Sci Xian 710121 Peoples R China Guizhou Univ Sch Math & Stat Guiyang 550025 Peoples R China
In this paper, we consider the problem that minimizing the sum of a nonsmooth function with a smooth one in the nonconvex setting, which arising in many contemporary applications such as machine learning, statistics, ... 详细信息
来源: 评论
AN accelerated RANDOMIZED proximal COORDINATE gradient method AND ITS APPLICATION TO REGULARIZED EMPIRICAL RISK MINIMIZATION
收藏 引用
SIAM JOURNAL ON OPTIMIZATION 2015年 第4期25卷 2244-2273页
作者: Lin, Qihang Lu, Zhaosong Xiao, Lin Univ Iowa Tippie Coll Business Iowa City IA 52242 USA Simon Fraser Univ Dept Math Burnaby BC V5A 1S6 Canada Microsoft Res Machine Learning Grp Redmond WA 98052 USA
We consider the problem of minimizing the sum of two convex functions: one is smooth and given by a gradient oracle, and the other is separable over blocks of coordinates and has a simple known structure over each blo... 详细信息
来源: 评论
A class of modified accelerated proximal gradient methods for nonsmooth and nonconvex minimization problems
收藏 引用
NUMERICAL ALGORITHMS 2024年 第1期95卷 207-241页
作者: Wang, Ting Liu, Hongwei Xian Univ Posts & Telecommun Sch Sci Xian 710121 Peoples R China Xidian Univ Sch Math & Stat Xian 710126 Peoples R China
Extrapolation, restart and stepsize are very powerful strategies for accelerating the convergence rates of first-order algorithms. In this paper, we propose a modified accelerated proximal gradient algorithm (modAPG),... 详细信息
来源: 评论
The augmented Lagrangian method based on the APG strategy for an inverse damped gyroscopic eigenvalue problem
收藏 引用
COMPUTATIONAL OPTIMIZATION AND APPLICATIONS 2015年 第3期62卷 815-850页
作者: Lu, Yue Zhang, Liwei Dalian Univ Technol Sch Math Sci Inst Operat Res & Control Theory Dalian 116024 Peoples R China
In this paper, we propose an augmented Lagrangian method based on the accelerated proximal gradient (APG) strategy for an inverse damped gyroscopic eigenvalue problem (IDGEP), which is a special case of the classical ... 详细信息
来源: 评论
accelerated stochastic gradient descent with step size selection rules
收藏 引用
SIGNAL PROCESSING 2019年 159卷 171-186页
作者: Yang, Zhuang Wang, Cheng Zhang, Zhemin Li, Jonathan Xiamen Univ Sch Informat Sci & Engn Fujian Key Lab Sensing & Comp Smart Cities Xiamen 361005 FJ Peoples R China Sun Yat Sen Univ Sch Elect & Commun Engn Guangzhou 510275 Guangdong Peoples R China Univ Waterloo Dept Geog & Environm Management Waterloo ON N2L 3G1 Canada
accelerated stochastic gradient descent (ASGD) methods, which incorporate accelerated proximal gradient (APG) and stochastic gradient (SG), have received considerable attention recently for solving regularized risk mi... 详细信息
来源: 评论
MAGMA: Multilevel accelerated gradient Mirror Descent Algorithm for Large-Scale Convex Composite Minimization
收藏 引用
SIAM JOURNAL ON IMAGING SCIENCES 2016年 第4期9卷 1829-1857页
作者: Hovhannisyan, Vahan Parpas, Panos Zafeiriou, Stefanos Imperial Coll London Dept Comp London SW7 2AZ England
Composite convex optimization models arise in several applications and are especially prevalent in inverse problems with a sparsity inducing norm and in general convex optimization with simple constraints. The most wi... 详细信息
来源: 评论
Fast and Accurate Matrix Completion via Truncated Nuclear Norm Regularization
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2013年 第9期35卷 2117-2130页
作者: Hu, Yao Zhang, Debing Ye, Jieping Li, Xuelong He, Xiaofei Zhejiang Univ Coll Comp Sci State Key Lab CAD&CG Hangzhou 310058 Zhejiang Peoples R China Arizona State Univ Dept Comp Sci & Engn Tempe AZ 85287 USA Arizona State Univ Ctr Evolutionary Med & Informat Biodesign Inst Tempe AZ 85287 USA Chinese Acad Sci Xian Inst Opt & Precis Mech State Key Lab Transicent Opt & Photon Ctr Opt IMagery Anal & Learning OPTIMAL Xian 710119 Shaanxi Peoples R China
Recovering a large matrix from a small subset of its entries is a challenging problem arising in many real applications, such as image inpainting and recommender systems. Many existing approaches formulate this proble... 详细信息
来源: 评论
An implementable proximal point algorithmic framework for nuclear norm minimization
收藏 引用
MATHEMATICAL PROGRAMMING 2012年 第1-2期133卷 399-436页
作者: Liu, Yong-Jin Sun, Defeng Toh, Kim-Chuan Natl Univ Singapore Dept Math Singapore 119076 Singapore Natl Univ Singapore Risk Management Inst Singapore 119076 Singapore Shenyang Aerosp Univ Fac Sci Shenyang 110136 Peoples R China Singapore MIT Alliance Singapore 117576 Singapore
The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimizatio... 详细信息
来源: 评论
Imputation and low-rank estimation with Missing Not At Random data
收藏 引用
STATISTICS AND COMPUTING 2020年 第6期30卷 1629-1643页
作者: Sportisse, Aude Boyer, Claire Josse, Julie Sorbonne Univ Lab Probabilites Stat & Modelisat Paris France Ecole Polytech Ctr Math Appl Palaiseau France Ecole Normale Super Dept Math & Applicat Paris France INRIA Saclay XPOP Palaiseau France
Missing values challenge data analysis because many supervised and unsupervised learning methods cannot be applied directly to incomplete data. Matrix completion based on low-rank assumptions are very powerful solutio... 详细信息
来源: 评论