咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程

主题

  • 1 篇 filters
  • 1 篇 neural networks
  • 1 篇 fpga acceleratio...
  • 1 篇 addernet
  • 1 篇 computational mo...
  • 1 篇 system-on-chip
  • 1 篇 fused bias remov...
  • 1 篇 kernel
  • 1 篇 hardware
  • 1 篇 quantization (si...
  • 1 篇 accuracy
  • 1 篇 activation-orien...
  • 1 篇 field programmab...
  • 1 篇 convolutional ne...

机构

  • 1 篇 suny binghamton ...
  • 1 篇 ars usda beltsvi...

作者

  • 1 篇 al kailani omar
  • 1 篇 zhou bin
  • 1 篇 zhang yunxiang
  • 1 篇 zhao wenfeng

语言

  • 1 篇 英文
检索条件"主题词=activation-oriented quantization"
1 条 记 录,以下是1-10 订阅
排序:
AdderNet 2.0: Optimal AdderNet Accelerator Designs With activation-oriented quantization and Fused Bias Removal-Based Memory Optimization
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS 2025年
作者: Zhang, Yunxiang Al Kailani, Omar Zhou, Bin Zhao, Wenfeng SUNY Binghamton Dept Elect & Comp Engn Binghamton NY 13850 USA ARS USDA Beltsville Agr Res Ctr Food Qual Lab Beltsville MD 20705 USA
Convolutional neural networks (CNNs) are computationally demanding due to expensive Multiply-ACcumulate (MAC) operations. Emerging neural network models, such as AdderNet, exploit efficient arithmetic alternatives lik... 详细信息
来源: 评论