咨询与建议

限定检索结果

文献类型

  • 7 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 12 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 6 篇 计算机科学与技术...
    • 3 篇 电气工程
    • 2 篇 控制科学与工程
    • 2 篇 生物医学工程(可授...
    • 1 篇 信息与通信工程
  • 3 篇 理学
    • 1 篇 数学
    • 1 篇 物理学
    • 1 篇 系统科学
  • 2 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 临床医学

主题

  • 12 篇 adaptive activat...
  • 4 篇 neural networks
  • 3 篇 deep learning
  • 3 篇 spline neural ne...
  • 3 篇 multilayer perce...
  • 2 篇 wavelet transfor...
  • 2 篇 generalization
  • 2 篇 ct brain images
  • 2 篇 partial differen...
  • 2 篇 neural network
  • 2 篇 generalized sigm...
  • 2 篇 function shape a...
  • 2 篇 convolutional ne...
  • 2 篇 nonlinear system...
  • 1 篇 scientific machi...
  • 1 篇 generalised sigm...
  • 1 篇 neurons
  • 1 篇 saturated activa...
  • 1 篇 task analysis
  • 1 篇 quadratic residu...

机构

  • 3 篇 univ ancona dipa...
  • 2 篇 shahid bahonar u...
  • 1 篇 department of st...
  • 1 篇 peking univ coll...
  • 1 篇 cranfield univ c...
  • 1 篇 ctr tecnol telec...
  • 1 篇 control & intell...
  • 1 篇 icrea acad barce...
  • 1 篇 univ tehran sch ...
  • 1 篇 univ politecn ca...
  • 1 篇 curtin univ mala...
  • 1 篇 univ roma la sap...
  • 1 篇 chongqing univ c...
  • 1 篇 department of au...
  • 1 篇 udemy inc dept d...

作者

  • 3 篇 uncini a
  • 2 篇 piazza f
  • 2 篇 zahedinasab roxa...
  • 2 篇 mohseni hadis
  • 1 篇 yazdanpanah m. j...
  • 1 篇 martinez-gost ma...
  • 1 篇 lu lu
  • 1 篇 shiji song
  • 1 篇 honghui wang
  • 1 篇 karami a.
  • 1 篇 perez-neira ana
  • 1 篇 ding chensen
  • 1 篇 solazzi m
  • 1 篇 vecci l
  • 1 篇 demirezen mustaf...
  • 1 篇 guarnieri s
  • 1 篇 zhang jun
  • 1 篇 m.j. yazdanpanah
  • 1 篇 celik ugurcan
  • 1 篇 lau mian mian

语言

  • 11 篇 英文
  • 1 篇 其他
检索条件"主题词=adaptive activation functions"
12 条 记 录,以下是1-10 订阅
排序:
ENN: A Neural Network With DCT adaptive activation functions
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2024年 第2期18卷 232-241页
作者: Martinez-Gost, Marc Perez-Neira, Ana Lagunas, Miguel Angel Ctr Tecnol Telecomun Catalunya Castelldefels 08860 Spain Univ Politecn Cataluna Dept Signal Theory Commun Barcelona 08034 Spain ICREA Acad Barcelona 08010 Spain
The expressiveness of neural networks highly depends on the nature of the activation function, although these are usually assumed predefined and fixed during the training stage. Under a signal processing perspective, ... 详细信息
来源: 评论
Simple yet effective adaptive activation functions for physics-informed neural networks
收藏 引用
COMPUTER PHYSICS COMMUNICATIONS 2025年 307卷
作者: Zhang, Jun Ding, Chensen Peking Univ Coll Engn Dept Mech & Engn Sci Beijing 100871 Peoples R China Chongqing Univ Coll Aerosp Engn Dept Engn Mech Chongqing 400030 Peoples R China
Physics-informed neural networks (PINNs) gained widespread advancements in solving differential equations, where the performance tightly hinges on the choice of activation functions that are inefficient when selected ... 详细信息
来源: 评论
Using deep convolutional neural networks with adaptive activation functions for medical CT brain image Classification  25
Using deep convolutional neural networks with adaptive activ...
收藏 引用
25th Iranian Conference on Biomedical Engineering / 3rd International Iranian Conference on Biomedical Engineering (ICBME)
作者: Zahedinasab, Roxana Mohseni, Hadis Shahid Bahonar Univ Kerman Comp Engn Dept Kerman Iran
recently, imaging has become an essential component in many fields of medical research. Analysis of the diverse medical image types requires sophisticated visualization and processing tools. Deep neural networks have ... 详细信息
来源: 评论
Enhancement of CT brain images Classification based on deep learning network with adaptive activation functions  8
Enhancement of CT brain images Classification based on deep ...
收藏 引用
8th International Conference on Computer and Knowledge Engineering (ICCKE)
作者: Zahedinasab, Roxana Mohseni, Hadis Shahid Bahonar Univ Kerman Comp Engn Dept Kerman Iran
Deep neural networks are one of the most important branches of machine learning that have been recently used in many fields of pattern recognition and machine vision applications successfully. One of the most famous n... 详细信息
来源: 评论
Learning Specialized activation functions for Physics-Informed Neural Networks
收藏 引用
Communications in Computational Physics 2023年 第9期34卷 869-906页
作者: Honghui Wang Lu Lu Shiji Song Gao Huang Department of Automation Tsinghua UniversityBeijing 100084P.R.China Department of Statistics and Data Science Yale UniversityNew HavenCT 06511USA
Physics-informed neural networks(PINNs)are known to suffer from optimization *** this work,we reveal the connection between the optimization difficulty of PINNs and activation ***,we show that PINNs exhibit high sensi... 详细信息
来源: 评论
Optimal Reusable Rocket Landing Guidance: A Cutting-Edge Approach Integrating Scientific Machine Learning and Enhanced Neural Networks
收藏 引用
IEEE ACCESS 2024年 12卷 16805-16829页
作者: Celik, Ugurcan Demirezen, Mustafa Umut Cranfield Univ Ctr Cyberphys & Autonomous Syst Bedford MK43 0AL England UDemy Inc Dept Data Prod San Francisco CA 94107 USA
This study presents an innovative approach that utilizes scientific machine learning and two types of enhanced neural networks for modeling a parametric guidance algorithm within the framework of ordinary differential... 详细信息
来源: 评论
Review of adaptive activation Function in Deep Neural Network
Review of Adaptive Activation Function in Deep Neural Networ...
收藏 引用
IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES)
作者: Lau, Mian Mian Lim, King Hann Curtin Univ Malaysia Curtin Sarawak Res Inst CDT 250 Miri Sarawak Malaysia
A biological inspired algorithm from human brain known as deep neural network (DNN) containing of multiple hidden layers often occurs vanishing gradient problem due to the saturation characteristic of activation funct... 详细信息
来源: 评论
Structured Wavelet-based Neural Network for Control of Nonlinear Systems
Structured Wavelet-based Neural Network for Control of Nonli...
收藏 引用
50th IEEE Conference of Decision and Control (CDC)/European Control Conference (ECC)
作者: Karami, A. Yazdanpanah, M. J. Univ Tehran Sch Elect & Comp Engn Control & Intelligent Proc Ctr Excellence Tehran Iran
In this paper, a wavelet-based neural network is proposed for the control of nonlinear systems. activation functions of neural network nodes are determined based on the wavelet transform. The controller can efficientl... 详细信息
来源: 评论
Structured Wavelet-based Neural Network for Control of Nonlinear Systems
Structured Wavelet-based Neural Network for Control of Nonli...
收藏 引用
IEEE Conference on Decision and Control
作者: A. Karami M.J. Yazdanpanah Control & Intelligent Processing Center of Excellence School of Electrical and Computer Engineering University of Tehran Tehran Iran
In this paper, a wavelet-based neural network is proposed for the control of nonlinear systems. activation functions of neural network nodes are determined based on the wavelet transform. The controller can efficientl... 详细信息
来源: 评论
Regularising neural networks using flexible multivariate activation function
收藏 引用
NEURAL NETWORKS 2004年 第2期17卷 247-260页
作者: Solazzi, M Uncini, A Univ Roma La Sapienza Dipartimento INFOCOM I-00184 Rome Italy Univ Ancona Dipartimento Elettron & Automat I-60131 Ancona Italy
This paper presents a new general neural structure based on nonlinear flexible multivariate function that can be viewed in the framework of the generalised regularisation net-works theory. The proposed architecture is... 详细信息
来源: 评论