咨询与建议

限定检索结果

文献类型

  • 96 篇 期刊文献
  • 51 篇 会议

馆藏范围

  • 147 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 128 篇 工学
    • 66 篇 计算机科学与技术...
    • 45 篇 电气工程
    • 41 篇 控制科学与工程
    • 13 篇 软件工程
    • 11 篇 机械工程
    • 11 篇 动力工程及工程热...
    • 11 篇 信息与通信工程
    • 10 篇 石油与天然气工程
    • 7 篇 仪器科学与技术
    • 6 篇 材料科学与工程(可...
    • 4 篇 土木工程
    • 4 篇 交通运输工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 力学(可授工学、理...
    • 2 篇 化学工程与技术
    • 2 篇 网络空间安全
    • 1 篇 建筑学
    • 1 篇 船舶与海洋工程
    • 1 篇 安全科学与工程
  • 31 篇 管理学
    • 31 篇 管理科学与工程(可...
    • 3 篇 工商管理
  • 25 篇 理学
    • 11 篇 数学
    • 7 篇 生物学
    • 4 篇 化学
    • 4 篇 系统科学
    • 3 篇 物理学
    • 1 篇 海洋科学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 农学
  • 2 篇 医学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 147 篇 adaptive particl...
  • 8 篇 particle swarm o...
  • 8 篇 genetic algorith...
  • 5 篇 convolutional ne...
  • 5 篇 least squares su...
  • 4 篇 deep learning
  • 4 篇 nonlinear system
  • 4 篇 inertia weight
  • 4 篇 load forecasting
  • 3 篇 electric vehicle...
  • 3 篇 photovoltaic pow...
  • 3 篇 wiener model
  • 3 篇 sliding mode con...
  • 3 篇 identification
  • 3 篇 feature extracti...
  • 3 篇 swarm intelligen...
  • 3 篇 local search
  • 3 篇 neural network
  • 3 篇 classification
  • 3 篇 hybrid energy st...

机构

  • 2 篇 hubei key labora...
  • 2 篇 northwestern pol...
  • 2 篇 yanshan univ ins...
  • 2 篇 natl inst techno...
  • 2 篇 shahrood univ te...
  • 2 篇 ferdowsi univ ma...
  • 2 篇 chung ang univ s...
  • 2 篇 islamic azad uni...
  • 2 篇 jiangsu univ sch...
  • 2 篇 shri mata vaishn...
  • 2 篇 changsha univ sc...
  • 2 篇 school of automa...
  • 1 篇 univ sci & techn...
  • 1 篇 sri venkateswara...
  • 1 篇 saveetha univ sa...
  • 1 篇 natl kaohsiung u...
  • 1 篇 new jersey inst ...
  • 1 篇 nanjing forestry...
  • 1 篇 dalian maritime ...
  • 1 篇 economic and tec...

作者

  • 3 篇 acharjee p.
  • 2 篇 tang yinggan
  • 2 篇 liu bo
  • 2 篇 boumhidi jaouad
  • 2 篇 murali m.
  • 2 篇 goswami s. k.
  • 2 篇 singh uday prata...
  • 2 篇 ben ali yamina m...
  • 2 篇 chen xin
  • 2 篇 khaleghi sadegh
  • 2 篇 alfi alireza
  • 2 篇 han zhenzhen
  • 2 篇 kim hyeong-seok
  • 2 篇 modares hamidrez...
  • 2 篇 panigrahi b. k.
  • 2 篇 jain sanjeev
  • 2 篇 boumhidi ismail
  • 2 篇 shobana j.
  • 2 篇 wenhe peng
  • 2 篇 song zhaoyun

语言

  • 139 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"主题词=adaptive particle swarm optimization"
147 条 记 录,以下是1-10 订阅
排序:
adaptive particle swarm optimization With Quantum-Inspired Quantum Walks for Robust Image Security
收藏 引用
IEEE ACCESS 2023年 11卷 71143-71153页
作者: El-Latif, Ahmed A. Abd Abd-El-Atty, Bassem Prince Sultan Univ Coll Comp & Informat Sci EIAS Data Sci Lab Riyadh 11586 Saudi Arabia Menoufia Univ Fac Sci Dept Math & Comp Sci Shibin Al Kawm 32511 Egypt Luxor Univ Fac Comp & Informat Dept Comp Sci Luxor 85957 Egypt
In this paper, we propose a novel image cryptosystem that combines the adapted particle swarm optimization (PSO) algorithm with a quantum-inspired Discrete-time Quantum Walk (DTQW). The proposed approach leverages the... 详细信息
来源: 评论
adaptive particle swarm optimization with population diversity control and its application in tandem blade optimization
收藏 引用
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART C-JOURNAL OF MECHANICAL ENGINEERING SCIENCE 2019年 第6期233卷 1859-1875页
作者: Song, Zhaoyun Liu, Bo Cheng, Hao Northwestern Polytech Univ Sch Power & Energy Xian Shaanxi Peoples R China
This paper proposes a new variant of particle swarm optimization, namely adaptive particle swarm optimization with population diversity control (APSO-PDC), to improve the performance of particle swarm optimization. AP... 详细信息
来源: 评论
adaptive particle swarm optimization algorithm based long short-term memory networks for sentiment analysis
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021年 第6期40卷 10703-10719页
作者: Shobana, J. Murali, M. SRM Inst Sci & Technol Sch Comp Dept CSE Chennai Tamil Nadu India
Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text's sentiment. Understanding the needs and behavior of the t... 详细信息
来源: 评论
adaptive particle swarm optimization For Best Schedule In Algorithmic- Level Synthesis
Adaptive Particle Swarm Optimization For Best Schedule In Al...
收藏 引用
International Conference on Communication and Electronics Systems (ICCES)
作者: Shilpa, K. C. Lakshminarayana, C. Singh, Manoj kumar Manuro Tech Res Bangalore Karnataka India
this paper presents the adaptive particle swarm optimization for optimal scheduling in Algorithmic level synthesis. adaptive particle swarm optimization algorithm is executed on time constraint scheduling problem usin... 详细信息
来源: 评论
adaptive particle swarm optimization Neural Network Genetic Algorithm in Nonlinear Function optimization Extreme
Adaptive Particle Swarm Optimization Neural Network Genetic ...
收藏 引用
World Automation Congress (WAC)
作者: Wei, Zhao Ying, Lan Jilin Agr Univ Informat Technol Acad Changchun Peoples R China
In order to more accurate for nonlinear function extreme, this paper used improved particle swarm optimization neural network combining with genetic algorithm method to solve the problem. In view of the particle swarm... 详细信息
来源: 评论
Nonlinear system identification using least squares support vector machine tuned by an adaptive particle swarm optimization
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2015年 第6期6卷 981-992页
作者: Wang, Shuen Han, Zhenzhen Liu, Fucai Tang, Yinggan Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Hebei Peoples R China Natl Engn Res Ctr Equipment & Technol Cold Strip Qinhuangdao 066004 Hebei Peoples R China
In this paper, we present a method for nonlinear system identification. The proposed method adopts least squares support vector machine (LSSVM) to approximate a nonlinear autoregressive model with eXogeneous (NARX). F... 详细信息
来源: 评论
Support vector regression based on optimal training subset and adaptive particle swarm optimization algorithm
收藏 引用
APPLIED SOFT COMPUTING 2013年 第8期13卷 3473-3481页
作者: Che, JinXing NanChang Inst Technol Dept Sci Nanchang 330099 Jiangxi Peoples R China
Support vector regression (SVR) has become very promising and popular in the field of machine learning due to its attractive features and profound empirical performance for small sample, nonlinearity and high dimensio... 详细信息
来源: 评论
Improved multi-layer hybrid adaptive particle swarm optimization based artificial bee colony for optimizing feature selection and classification of microarray data
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第26期83卷 67259-67281页
作者: Kilicarslan, Serhat Donmez, Emrah Bandirma Onyedi Eylul Univ Fac Engn & Nat Sci Dept Software Engn TR-10200 Balikesir Turkiye
Early diagnosis of cancer allows for easy follow-up of patients' treatment processes. The utilization of microarray gene technology has become increasingly prevalent in the detection of cancer. However, the limite... 详细信息
来源: 评论
An adaptive particle swarm optimization Algorithm for Solving DNA Fragment Assembly Problem
收藏 引用
CURRENT BIOINFORMATICS 2015年 第1期10卷 97-105页
作者: Rajagopal, Indumathy Sankareswaran, Uma Maheswari Coimbatore Inst Technol Dept Elect & Commun Engn Coimbatore 641014 Tamil Nadu India
This paper proposes an efficient method to solve the DNA fragment assembly problem using adaptive particle swarm optimization (APSO). The DNA fragment assembly for shotgun sequencing has been under study with great si... 详细信息
来源: 评论
Parameter estimation of bilinear systems based on an adaptive particle swarm optimization
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2010年 第7期23卷 1105-1111页
作者: Modares, Hamidreza Alfi, Alireza Sistani, Mohammad-Bagher Naghibi Shahrood Univ Technol Fac Elect & Robot Engn Shahrood *** Iran Ferdowsi Univ Mashhad Dept Elect Engn Mashhad 917751111 Iran
Bilinear models can approximate a large class of nonlinear systems adequately and usually with considerable parsimony in the number of coefficients required. This paper presents the application of particle swarm Optim... 详细信息
来源: 评论