咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 工学
    • 2 篇 电气工程
    • 2 篇 计算机科学与技术...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程

主题

  • 2 篇 approximation al...
  • 2 篇 deep learning
  • 2 篇 nonconvex stocha...
  • 2 篇 learning rate
  • 2 篇 convergence
  • 2 篇 optimization
  • 2 篇 deep neural netw...
  • 2 篇 adaptive-learnin...
  • 2 篇 heuristic algori...
  • 1 篇 gwdc
  • 1 篇 heuristic intell...
  • 1 篇 convex functions
  • 1 篇 amsgwdc
  • 1 篇 symmetric matric...
  • 1 篇 adam
  • 1 篇 adaptive moment ...
  • 1 篇 amsgrad
  • 1 篇 adaptive mean sq...
  • 1 篇 training
  • 1 篇 stochastic proce...

机构

  • 1 篇 meiji univ grad ...
  • 1 篇 meiji univ dept ...
  • 1 篇 meiji univ dept ...

作者

  • 2 篇 iiduka hideaki
  • 1 篇 zhu yini

语言

  • 2 篇 英文
检索条件"主题词=adaptive-learning-rate optimization algorithm"
2 条 记 录,以下是1-10 订阅
排序:
Appropriate learning rates of adaptive learning rate optimization algorithms for Training Deep Neural Networks
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2022年 第12期52卷 13250-13261页
作者: Iiduka, Hideaki Meiji Univ Dept Comp Sci Tokyo Kanagawa 2148571 Japan
This article deals with nonconvex stochastic optimization problems in deep learning. Appropriate learning rates, based on theory, for adaptive-learning-rate optimization algorithms (e.g., Adam and AMSGrad) to approxim... 详细信息
来源: 评论
Unified algorithm Framework for Nonconvex Stochastic optimization in Deep Neural Networks
收藏 引用
IEEE ACCESS 2021年 9卷 143807-143823页
作者: Zhu, Yini Iiduka, Hideaki Meiji Univ Grad Sch Sci & Technol Comp Sci Course Kawasaki Kanagawa 2148571 Japan Meiji Univ Dept Comp Sci Kawasaki Kanagawa 2148571 Japan
This paper presents a unified algorithmic framework for nonconvex stochastic optimization, which is needed to train deep neural networks. The unified algorithm includes the existing adaptive-learning-rate optimization... 详细信息
来源: 评论