咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 石油与天然气工程

主题

  • 1 篇 advanced selecti...
  • 1 篇 grey wolf optimi...
  • 1 篇 fault diagnosis
  • 1 篇 broken rotor bar
  • 1 篇 broken rotor bar...
  • 1 篇 rotors
  • 1 篇 unscented kalman...
  • 1 篇 kalman filters
  • 1 篇 ims
  • 1 篇 central deferenc...
  • 1 篇 state estimation
  • 1 篇 brbs
  • 1 篇 cdkf
  • 1 篇 deep machine lea...
  • 1 篇 grey wolf algori...
  • 1 篇 dml network
  • 1 篇 induction motor
  • 1 篇 broken rotor bar...
  • 1 篇 learning (artifi...
  • 1 篇 induction motors

机构

  • 1 篇 islamic azad uni...

作者

  • 1 篇 nafar mehdi
  • 1 篇 zaniani ali amir...
  • 1 篇 simab mohsen

语言

  • 1 篇 英文
检索条件"主题词=advanced selective ensemble method"
1 条 记 录,以下是1-10 订阅
排序:
Deep machine learning with grey wolf algorithm and central deference Kalman filter based broken rotor bars detection in induction motor
收藏 引用
IET RENEWABLE POWER GENERATION 2022年 第16期16卷 3519-3530页
作者: Zaniani, Ali Amiri Nafar, Mehdi Simab, Mohsen Islamic Azad Univ Marvdasht Branch Dept Elect Engn Marvdasht Iran
The present study tries to propose a new method which is using Central deference Kalman Filter (CDKF) as input index of deep machine learning (DML), for simulating state estimation and broken rotor bars (BRBs) diagnos... 详细信息
来源: 评论