咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 1 篇 support vector m...
  • 1 篇 grey predictor m...
  • 1 篇 real wind measur...
  • 1 篇 mean absolute er...
  • 1 篇 power system pla...
  • 1 篇 capacity factor
  • 1 篇 power system ope...
  • 1 篇 wind speed
  • 1 篇 power system con...
  • 1 篇 historical recor...
  • 1 篇 advanced time se...
  • 1 篇 power engineerin...
  • 1 篇 short-term wind ...
  • 1 篇 wind power plant...
  • 1 篇 extreme learning...
  • 1 篇 wind power-speed...
  • 1 篇 high-quality win...
  • 1 篇 support vector m...
  • 1 篇 weather station
  • 1 篇 australia region

机构

  • 1 篇 univ nsw sch ele...
  • 1 篇 univ sydney sch ...

作者

  • 1 篇 dong zhao yang
  • 1 篇 ma jin
  • 1 篇 mahmoud tawfek

语言

  • 1 篇 英文
检索条件"主题词=advanced time series processing method"
1 条 记 录,以下是1-10 订阅
排序:
advanced method for short-term wind power prediction with multiple observation points using extreme learning machines
收藏 引用
JOURNAL OF ENGINEERING-JOE 2018年 第1期2018卷 29-38页
作者: Mahmoud, Tawfek Dong, Zhao Yang Ma, Jin Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia Univ NSW Sch Elect Engn & Telecommun Sydney NSW Australia
This research paper presents an advanced approach to enhance the short-term wind power prediction based on artificial intelligence techniques. A high-quality wind power prediction is essential for power system plannin... 详细信息
来源: 评论