咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 17 篇 会议

馆藏范围

  • 40 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 39 篇 工学
    • 36 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 9 篇 软件工程
    • 6 篇 信息与通信工程
    • 4 篇 控制科学与工程
    • 3 篇 电子科学与技术(可...
    • 1 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 石油与天然气工程
    • 1 篇 网络空间安全
  • 4 篇 理学
    • 2 篇 数学
    • 2 篇 物理学
    • 1 篇 化学
    • 1 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 40 篇 adversarial exam...
  • 9 篇 deep learning
  • 5 篇 adversarial atta...
  • 4 篇 adversarial exam...
  • 2 篇 interpretability
  • 2 篇 deep neural netw...
  • 2 篇 adversarial robu...
  • 2 篇 out-of-distribut...
  • 2 篇 adversarial atta...
  • 2 篇 saliency map
  • 2 篇 adversarial exam...
  • 2 篇 adversarial mach...
  • 2 篇 few-shot learnin...
  • 2 篇 feature extracti...
  • 2 篇 machine learning
  • 2 篇 security
  • 2 篇 game theory
  • 2 篇 deep neural netw...
  • 1 篇 uncertainty quan...
  • 1 篇 multimodal learn...

机构

  • 2 篇 univ chinese aca...
  • 2 篇 seoul natl univ ...
  • 2 篇 harbin inst tech...
  • 2 篇 chinese acad sci...
  • 2 篇 school of cyber ...
  • 2 篇 soongsil univ sc...
  • 2 篇 key laboratory o...
  • 2 篇 state key lab ma...
  • 1 篇 wuhan text univ ...
  • 1 篇 jianghuai adv te...
  • 1 篇 department of co...
  • 1 篇 university of sc...
  • 1 篇 nanjing univ inf...
  • 1 篇 univ milano bico...
  • 1 篇 new jersey inst ...
  • 1 篇 beijing normal u...
  • 1 篇 tsinghua univ sc...
  • 1 篇 human technopole...
  • 1 篇 natl univ def te...
  • 1 篇 jianghuai advanc...

作者

  • 4 篇 peng anjie
  • 3 篇 deng kang
  • 2 篇 zhou zhiyang
  • 2 篇 shin yeong-gil
  • 2 篇 liang zhenyu
  • 2 篇 zeng hui
  • 2 篇 chung minyoung
  • 2 篇 liu jie
  • 2 篇 ye dan
  • 2 篇 jung seunghwan
  • 2 篇 chen biwei
  • 2 篇 dou wensheng
  • 2 篇 wang shen
  • 2 篇 gong yuxin
  • 2 篇 mu hua
  • 1 篇 bin xia
  • 1 篇 ni wei
  • 1 篇 pradip kumar sha...
  • 1 篇 zhao chenxu
  • 1 篇 xu longyu

语言

  • 40 篇 英文
检索条件"主题词=adversarial example detection"
40 条 记 录,以下是1-10 订阅
排序:
adversarial example detection by predicting adversarial noise in the frequency domain
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2023年 第16期82卷 25235-25251页
作者: Jung, Seunghwan Chung, Minyoung Shin, Yeong-Gil Seoul Natl Univ Dept Comp Sci & Engn 1 Gwanak Ro Seoul 08826 South Korea Soongsil Univ Sch Software 369 Sangdo Ro Seoul 06978 South Korea
Recent advances in deep neural network (DNN) techniques have increased the importance of security and robustness of algorithms where DNNs are applied. However, several studies have demonstrated that neural networks ar... 详细信息
来源: 评论
adversarial example detection based on saliency map features
收藏 引用
APPLIED INTELLIGENCE 2022年 第6期52卷 6262-6275页
作者: Wang, Shen Gong, Yuxin Harbin Inst Technol Harbin Peoples R China
In recent years, machine learning has greatly improved image recognition capability. However, studies have shown that neural network models are vulnerable to adversarial examples that make models output wrong answers ... 详细信息
来源: 评论
adversarial example detection BAYESIAN GAME  30
ADVERSARIAL EXAMPLE DETECTION BAYESIAN GAME
收藏 引用
30th IEEE International Conference on Image Processing (ICIP)
作者: Zeng, Hui Chen, Biwei Deng, Kang Peng, Anjie Southwest Univ Sci & Technol Mianyang Sichuan Peoples R China Beijing Normal Univ Beijing Peoples R China
Despite the increasing attack ability and transferability of adversarial examples (AE), their security, i.e., how unlikely they can be detected, has been ignored more or less. Without the ability to circumvent popular... 详细信息
来源: 评论
Robust adversarial example detection Algorithm Based on High-Level Feature Differences
收藏 引用
SENSORS 2025年 第6期25卷 1770-1770页
作者: Mu, Hua Li, Chenggang Peng, Anjie Wang, Yangyang Liang, Zhenyu Natl Univ Def Technol Coll Elect Engn Hefei 230037 Peoples R China First Peoples Hosp Guangyuan Guangyuan 628017 Peoples R China Southwest Univ Sci & Technol Sch Comp Sci & Technol Mianyang 621010 Peoples R China Jianghuai Adv Technol Ctr Jianghuai 230031 Peoples R China
The threat posed by adversarial examples (AEs) to deep learning applications has garnered significant attention from the academic community. In response, various defense strategies have been proposed, including advers... 详细信息
来源: 评论
AED-PADA: Improving Generalizability of adversarial example detection via Principal adversarial Domain Adaptation
收藏 引用
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS 2025年 第2期21卷 1-24页
作者: Peng, Heqi Wang, Yunhong Yang, Ruijie Li, Beichen Wang, Rui Guo, Yuanfang Beihang Univ Sch Comp Sci & Engn Beijing Peoples R China Chinese Acad Sci State Key Lab Informat Secur Inst Informat Engn Beijing Peoples R China
adversarial example detection, which can be conveniently applied in many scenarios, is important in the area of adversarial defense. Unfortunately, existing detection methods suffer from poor generalization performanc... 详细信息
来源: 评论
Revisiting model's uncertainty and confidences for adversarial example detection
收藏 引用
APPLIED INTELLIGENCE 2023年 第1期53卷 509-531页
作者: Aldahdooh, Ahmed Hamidouche, Wassim Deforges, Olivier Univ Rennes CNRS INSA Rennes IETR UMR 6164 F-35000 Rennes France
Security-sensitive applications that rely on Deep Neural Networks (DNNs) are vulnerable to small perturbations that are crafted to generate adversarial examples. The (AEs) are imperceptible to humans and cause DNN to ... 详细信息
来源: 评论
adversarial example detection using semantic graph matching
收藏 引用
APPLIED SOFT COMPUTING 2023年 141卷
作者: Gong, Yuxin Wang, Shen Jiang, Xunzhi Yin, Liyao Sun, Fanghui Harbin Inst Technol Harbin 150000 Heilongjiang Peoples R China
Deep neural networks have recently been found to be vulnerable to adversarial examples, which can deceive attacked models with high confidence. This has given rise to significant security threats and raised doubts abo... 详细信息
来源: 评论
Staying in the Cat-and-Mouse Game: Towards Black-box adversarial example detection  2
Staying in the Cat-and-Mouse Game: Towards Black-box Adversa...
收藏 引用
2nd International Workshop on Deep Multimodal Generation and Retrieval (MMGR)
作者: Gao, Yifei Lin, Zhiyu Yang, Yunfan Sang, Jitao Yang, Xiaoshan Xu, Changsheng Beijing Jiaotong Univ Beijing Peoples R China Pengcheng Lab Shenzhen Peoples R China Chinese Acad Sci MAIS Inst Automat Beijing Peoples R China Univ Chinese Acad Sci Sch Artificial Intelligence Beijing Peoples R China
adversarial example detection is known to be an effective adversarial defense method. Black-box attack, which is a more realistic threat and has led to various black-box adversarial training-based defense methods, how... 详细信息
来源: 评论
SmsNet: A New Deep Convolutional Neural Network Model for adversarial example detection
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2022年 24卷 230-244页
作者: Wang, Jinwei Zhao, Junjie Yin, Qilin Luo, Xiangyang Zheng, Yuhui Shi, Yun-Qing Jha, Sunil Kr Nanjing Univ Informat Sci & Technol Dept Comp & Software Nanjing 210044 Jiangsu Peoples R China State Key Lab Math Engn & Adv Comp Zhengzhou 450001 Henan Peoples R China Xidian Univ Shanxi Key Lab Network Syst Secur Xian 710071 Shaanxi Peoples R China Minist Educ Engn Res Ctr Digital Forens Nanjing 210044 Jiangsu Peoples R China Nanjing Univ Informat Sci & Technol Nanjing Peoples R China New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA
The emergence of adversarial examples has had a significant impact on the development and application of deep learning. In this paper, a novel convolutional neural network model, the stochastic multifilter statistical... 详细信息
来源: 评论
FreqSense: Universal and Low-Latency adversarial example detection for Speaker Recognition with Interpretability in Frequency Domain
FreqSense: Universal and Low-Latency Adversarial Example Det...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Huang, Yihuan Li, Yuanzhe Ren, Yanzhen Tu, Weiping Yang, Yuhong Key Laboratory of Aerospace Information Security and Trusted Computing Ministry of Education China School of Cyber Science and Engineering Wuhan University China National Engineering Research Center for Multimedia Software School of Computer Science Wuhan University China
Speaker recognition (SR) systems are particularly vulnerable to adversarial example (AE) attacks. To mitigate these attacks, AE detection systems are typically integrated into SR systems. To overcome the limitations o... 详细信息
来源: 评论