咨询与建议

限定检索结果

文献类型

  • 8 篇 会议
  • 6 篇 期刊文献

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 8 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 交通运输工程
    • 1 篇 软件工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
    • 1 篇 网络空间安全
  • 6 篇 理学
    • 3 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 1 篇 经济学
    • 1 篇 应用经济学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 医学

主题

  • 14 篇 agglomerative al...
  • 2 篇 clustering
  • 2 篇 statistical appr...
  • 2 篇 community mining
  • 2 篇 distance matrix
  • 1 篇 brats dataset
  • 1 篇 k-nn
  • 1 篇 system architect...
  • 1 篇 customer segment...
  • 1 篇 deep learning te...
  • 1 篇 editing algorith...
  • 1 篇 heterogeneity in...
  • 1 篇 divisive algorit...
  • 1 篇 ground truth ann...
  • 1 篇 decision tree
  • 1 篇 geometric-variab...
  • 1 篇 cluster algorith...
  • 1 篇 outranking relat...
  • 1 篇 oversegmentation
  • 1 篇 community detect...

机构

  • 1 篇 univ politecn ca...
  • 1 篇 inst politecn co...
  • 1 篇 univ montpellier...
  • 1 篇 lloyd institute ...
  • 1 篇 russian acad sci...
  • 1 篇 indira college o...
  • 1 篇 cent south univ ...
  • 1 篇 univ barcelona f...
  • 1 篇 china geol surve...
  • 1 篇 beijing univ pos...
  • 1 篇 univ hyderabad s...
  • 1 篇 indian sch mines...
  • 1 篇 nanjing univ inf...
  • 1 篇 univ montpellier...
  • 1 篇 univ coimbra fac...
  • 1 篇 new york univers...
  • 1 篇 univ strasbourg ...
  • 1 篇 univ paris cite ...
  • 1 篇 commun univ chin...
  • 1 篇 inrae maiage jou...

作者

  • 1 篇 singh pankaj
  • 1 篇 irigoien itziar
  • 1 篇 li min
  • 1 篇 chen gang
  • 1 篇 niu xiaonan
  • 1 篇 eckes t
  • 1 篇 m.p.s.bhatia
  • 1 篇 bahuguna suraj
  • 1 篇 chen jianaer
  • 1 篇 levin mark sh.
  • 1 篇 rebafka tabea
  • 1 篇 sahoo tapan kuma...
  • 1 篇 tatiya manjusha
  • 1 篇 negi atul
  • 1 篇 dias luis c.
  • 1 篇 gascuel olivier
  • 1 篇 choudhury tanupr...
  • 1 篇 criscuolo alexis
  • 1 篇 fernandez elena
  • 1 篇 kulkarni gururaj...

语言

  • 14 篇 英文
检索条件"主题词=agglomerative algorithm"
14 条 记 录,以下是1-10 订阅
排序:
Apply agglomerative algorithm and Vgg16 on Brain Tumor Segmentation (Dataset to be Used Brats)  6
Apply Agglomerative Algorithm and Vgg16 on Brain Tumor Segme...
收藏 引用
6th International Conference on Contemporary Computing and Informatics, IC3I 2023
作者: Vempaty, Lakshmi Namratha Tatiya, Manjusha Shrivastava, Anurag Kulkarni, Gururaj L. Singh, Pankaj Saxena, Vijay New York University Avis Budget Group South BrunswickNJ United States Indira College of Engineering and Management Department of Computer Engineering Pune India Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai India Vardhaman College of Engineering Shamshabed Computer Science and Engineering Hyderabad India Lloyd Law College Greater Noida India Lloyd Institute of Management and Technology Greater Noida India
Medical imaging analysis relies heavily on the segmentation of brain tumours to help in treatment planning, diagnosis and patient monitoring. The recent breakthroughs in artificial intelligence and deep learning appro... 详细信息
来源: 评论
Model-based clustering of multiple networks with a hierarchical algorithm
收藏 引用
STATISTICS AND COMPUTING 2024年 第1期34卷 32-32页
作者: Rebafka, Tabea Univ Paris Cite Sorbonne Univ CNRS Lab Probabil Stat & Modelisat LPSM Paris France INRAE MaIAGE Jouy En Josas France
The paper tackles the problem of clustering multiple networks, directed or not, that do not share the same set of vertices, into groups of networks with similar topology. A statistical model-based approach based on a ... 详细信息
来源: 评论
MPOC: an agglomerative algorithm for multicriteria partially ordered clustering
收藏 引用
4OR-A QUARTERLY JOURNAL OF OPERATIONS RESEARCH 2013年 第3期11卷 253-273页
作者: Rocha, Clara Dias, Luis C. INESC Coimbra P-3000033 Coimbra Portugal Inst Politecn Coimbra Escola Super Tecnol Saude Coimbra P-3040162 Coimbra Portugal Univ Coimbra Fac Econ P-3004512 Coimbra Portugal
In the field of multicriteria decision aid, considerable attention has been paid to supervised classification problems where the purpose is to assign alternatives into predefined ordered classes. In these approaches, ... 详细信息
来源: 评论
agglomerative oversegmentation using dual similarity and entropy rate
收藏 引用
PATTERN RECOGNITION 2019年 93卷 324-336页
作者: Ni, Huan Niu, Xiaonan Nanjing Univ Informat Sci & Technol Sch Remote Sensing & Geomat Engn Nanjing 210044 Jiangsu Peoples R China China Geol Survey Nanjing Ctr Nanjing 210016 Jiangsu Peoples R China
Oversegmentation is a preprocessing step for many computer vision and remote sensing tasks, such as object recognition and image understanding. In this paper, a method called agglomerative oversegmentation (AOS) is pr... 详细信息
来源: 评论
Customer Segmentation using K-means Clustering  1
Customer Segmentation using K-means Clustering
收藏 引用
1st International Conference on Computational Techniques, Electronics and Mechanical Systems (CTEMS)
作者: Kansal, Tushar Bahuguna, Suraj Singh, Vishal Choudhury, Tanupriya UPES Dept Informat Sch Comp Sci Dehra Dun Uttar Pradesh India
The zeitgeist of modern era is innovation, where everyone is embroiled into competition to be better than others. Today's business run on the basis of such innovation having ability to enthral the customers with t... 详细信息
来源: 评论
Study of Preprocessing Sensitivity on Laser Induced Breakdown Spectroscopy (LIBS) Spectral Classification
Study of Preprocessing Sensitivity on Laser Induced Breakdow...
收藏 引用
International Conference on Advances in Computing, Communications and Informatics ICACCI
作者: Sahoo, Tapan Kumar Negi, Atul Gundawar, Manoj Kumar Indian Sch Mines Dept Comp Sci & Engn Dhanbad Bihar India Univ Hyderabad Sch Comp & Informat Sci Hyderabad Andhra Pradesh India Univ Hyderabad Adv Ctr Res High Energy Mat Hyderabad Andhra Pradesh India
Laser induced breakdown spectroscopy (LIBS) is an atomic emission based spectroscopy that uses a laser pulse as the source of excitation. The laser is focused to form hot plasma, which atomizes and excites the sample.... 详细信息
来源: 评论
Community Detection in Sample Networks Generated from Gaussian Mixture Model
Community Detection in Sample Networks Generated from Gaussi...
收藏 引用
2nd International Conference on Swarm Intelligence (ICSI)
作者: Zhao, Ling Liu, Tingzhan Liu, Jian Beijing Univ Posts & Telecommun Beijing 100876 Peoples R China Commun Univ China Sch Sci Beijing 100024 Peoples R China Peking Univ LMAM Sch Mat Sci Beijing 100871 Peoples R China
Detecting communities in complex networks is of great importance in sociology, biology and computer science, disciplines where systems are often represented as networks. In this paper, we use the coarse-grained-diffus... 详细信息
来源: 评论
GEVA: geometric variability-based approaches for identifying patterns in data
收藏 引用
COMPUTATIONAL STATISTICS 2010年 第2期25卷 241-255页
作者: Irigoien, Itziar Arenas, Concepcion Fernandez, Elena Mestres, Francisco Univ Barcelona Fac Biol Dept Estadist E-08028 Barcelona Spain UPV EHU Dept Computat & Artificial Intelligence Donostia San Sebastian Spain Univ Politecn Cataluna Dept Estadist & Invest Operat Barcelona Spain Univ Barcelona Dept Genet E-08028 Barcelona Spain
This paper, arising from population studies, develops clustering algorithms for identifying patterns in data. Based on the concept of geometric variability, we have developed one polythetic-divisive and three agglomer... 详细信息
来源: 评论
An Agglomerate algorithm for Mining Overlapping and Hierarchical Functional Modules in Protein Interaction Networks
An Agglomerate Algorithm for Mining Overlapping and Hierarch...
收藏 引用
6th International Symposium on Bioinformatics Research and Applications
作者: Ren, Jun Wang, Jianxin Chen, Jianaer Li, Min Chen, Gang Cent South Univ Sch Informat Sci & Engn Changsha 410083 Hunan Peoples R China
Real PPI networks commonly have large size. Functional modules in them are usually overlapping and hierarchical. So it is significant to identify both overlapping and hierarchical modules with low time complexity. How... 详细信息
来源: 评论
Statistical Approach for Community Mining in Social Networks
Statistical Approach for Community Mining in Social Networks
收藏 引用
IEEE International Conference on Service Operations and Logistics and Informatics
作者: Bhatia, M. P. S. Gaur, Pankaj Univ Delhi Dept Comp Engn Netaji Subhas Inst Technol Delhi 110007 India
The popularity of social networking on the web and the explosive combination with data mining techniques open up vast and so far unexplored opportunities for social intelligence on the web. A network community is a sp... 详细信息
来源: 评论