咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 aggregates
  • 1 篇 collaborative fi...
  • 1 篇 privacy protecti...
  • 1 篇 recommender syst...
  • 1 篇 product characte...
  • 1 篇 feedback
  • 1 篇 optical waveleng...
  • 1 篇 human- computer ...
  • 1 篇 consumer incenti...
  • 1 篇 e-commerce
  • 1 篇 information filt...
  • 1 篇 collaborative-fi...
  • 1 篇 intrinsic consum...
  • 1 篇 information filt...
  • 1 篇 algorithm design
  • 1 篇 algorithm design...
  • 1 篇 algorithm design...
  • 1 篇 guidelines
  • 1 篇 recommendation a...
  • 1 篇 prediction algor...

机构

  • 1 篇 univ arizona dep...
  • 1 篇 penn state univ ...

作者

  • 1 篇 huang zan
  • 1 篇 chen hsinchen
  • 1 篇 zeng daniel

语言

  • 1 篇 英文
检索条件"主题词=algorithm design and evaluation"
1 条 记 录,以下是1-10 订阅
排序:
A comparison of collaborative-filtering recommendation algorithms for e-commerce
收藏 引用
IEEE INTELLIGENT SYSTEMS 2007年 第5期22卷 68-78页
作者: Huang, Zan Zeng, Daniel Chen, Hsinchen Penn State Univ Smeal Coll Business Dept Supply Chain & Informat Syst University Pk PA 16802 USA Univ Arizona Dept Management Informat Syst Tucson AZ 85721 USA
Collaborative filtering is one of the most widely adopted and successful recommendation approaches. Unlike approaches based on intrinsic consumer and product characteristics, CF characterizes consumers and products im... 详细信息
来源: 评论