咨询与建议

限定检索结果

文献类型

  • 49 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 71 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 68 篇 工学
    • 52 篇 电气工程
    • 35 篇 计算机科学与技术...
    • 13 篇 软件工程
    • 11 篇 信息与通信工程
    • 6 篇 仪器科学与技术
    • 6 篇 控制科学与工程
    • 5 篇 测绘科学与技术
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 交通运输工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 生物医学工程(可授...
  • 20 篇 理学
    • 12 篇 物理学
    • 5 篇 数学
    • 4 篇 地球物理学
    • 1 篇 统计学(可授理学、...
  • 17 篇 医学
    • 17 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 71 篇 algorithm unroll...
  • 15 篇 deep learning
  • 12 篇 optimization
  • 9 篇 signal processin...
  • 8 篇 interpretable ne...
  • 7 篇 feature extracti...
  • 7 篇 training
  • 6 篇 encoding
  • 5 篇 compressed sensi...
  • 5 篇 iterative method...
  • 4 篇 imaging
  • 4 篇 fault diagnosis
  • 4 篇 inverse problems
  • 4 篇 image deblurring
  • 4 篇 graph neural net...
  • 4 篇 sparse coding
  • 4 篇 learning to opti...
  • 3 篇 deep neural netw...
  • 3 篇 interpretable de...
  • 3 篇 graph signal pro...

机构

  • 4 篇 xi an jiao tong ...
  • 3 篇 nanyang technol ...
  • 2 篇 weizmann inst sc...
  • 2 篇 chinese acad sci...
  • 2 篇 univ chinese aca...
  • 2 篇 china univ geosc...
  • 2 篇 xi an jiao tong ...
  • 2 篇 xi an jiao tong ...
  • 2 篇 univ elect sci &...
  • 2 篇 dongguk univ dep...
  • 2 篇 penn state univ ...
  • 2 篇 peking univ sch ...
  • 2 篇 mitsubishi elect...
  • 2 篇 univ hong kong d...
  • 2 篇 shanghaitech uni...
  • 2 篇 xi an jiao tong ...
  • 2 篇 china univ geosc...
  • 1 篇 rice univ dept e...
  • 1 篇 kyungpook natl u...
  • 1 篇 indian inst sci ...

作者

  • 8 篇 eldar yonina c.
  • 5 篇 wang shibin
  • 5 篇 chen xuefeng
  • 4 篇 yan ruqiang
  • 4 篇 monga vishal
  • 3 篇 lee chul
  • 3 篇 qin fuhua
  • 3 篇 halimi abderrahi...
  • 3 篇 koo jakeoung
  • 3 篇 li yuelong
  • 3 篇 mclaughlin steph...
  • 3 篇 chen siheng
  • 3 篇 zhao zhibin
  • 2 篇 wotao yin
  • 2 篇 jialin liu
  • 2 篇 song pingfan
  • 2 篇 zhang haichuan
  • 2 篇 chen bin
  • 2 篇 dragotti pier lu...
  • 2 篇 chan stanley h.

语言

  • 70 篇 英文
检索条件"主题词=algorithm unrolling"
71 条 记 录,以下是61-70 订阅
排序:
Deep Interpretable Fully CNN Structure for Sparse Hyperspectral Unmixing via Model-Driven and Data-Driven Integration
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2023年 61卷 1-1页
作者: Kong, Fanqiang Chen, Mengyue Li, Yunsong Li, Dan Zheng, Yuhan Nanjing Univ Aeronaut & Astronaut Coll Astronaut Nanjing 210016 Peoples R China Xidian Univ State Key Lab Integrated Serv Networks Xidian 710071 Peoples R China
Hyperspectral unmixing (HSU), which aims to identify constituent materials and estimate the corresponding proportions in a scene, is an essential research topic in remote sensing. Most deep learning-based methods are ... 详细信息
来源: 评论
Learning-Based High-Frame-Rate SAR Imaging
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2023年 61卷 1页
作者: Wu, Junjie Pu, Wei An, Hongyang Huang, Yulin Yang, Haiguang Yang, Jianyu Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu Peoples R China
As high-frame-rate synthetic aperture radar (SAR) has the ability to form continuous SAR images and dynamically monitor the ground areas of interest, it has attracted more and more attention nowadays. In practical app... 详细信息
来源: 评论
MODEL-INSPIRED DEEP LEARNING FOR LIGHT-FIELD MICROSCOPY WITH APPLICATION TO NEURON LOCALIZATION
MODEL-INSPIRED DEEP LEARNING FOR LIGHT-FIELD MICROSCOPY WITH...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Song, Pingfan Jadan, Herman Verinaz Howe, Carmel L. Quicke, Peter Foust, Amanda J. Dragotti, Pier Luigi Imperial Coll London Dept Elect & Elect Engn London England Imperial Coll London Dept Bioengn London England Imperial Coll London Ctr Neurotechnol London England
Light-field microscopes are able to capture spatial and angular information of incident light rays. This allows reconstructing 3D locations of neurons from a single snap-shot. In this work, we propose a model-inspired... 详细信息
来源: 评论
Decentralized Statistical Inference with Unrolled Graph Neural Networks  60
Decentralized Statistical Inference with Unrolled Graph Neur...
收藏 引用
60th IEEE Conference on Decision and Control (CDC)
作者: Wang, He Shen, Yifei Wang, Ziyuan Li, Dongsheng Zhang, Jun Letaief, Khaled B. Lu, Jie ShanghaiTech Univ Sch Informat Sci & Technol Shanghai 201210 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China Chinese Acad Sci Shanghai Inst Microsyst & Informat Technol Shanghai 200050 Peoples R China Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China Microsoft Res Asia Shanghai Peoples R China Hong Kong Polytech Univ Dept Elect & Informat Engn Hong Kong Peoples R China
In this paper, we investigate the decentralized statistical inference problem, where a network of agents cooperatively recover a (structured) vector from private noisy samples without centralized coordination. Existin... 详细信息
来源: 评论
GRAPH SIGNAL DENOISING VIA unrolling NETWORKS
GRAPH SIGNAL DENOISING VIA UNROLLING NETWORKS
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Chen, Siheng Eldar, Yonina C. Mitsubishi Elect Res Labs Cambridge MA 02139 USA Weizmann Inst Sci Rehovot Israel
We propose an interpretable graph neural network framework to denoise single or multiple noisy graph signals. The proposed graph unrolling networks expand algorithm unrolling to the graph domain and provide an interpr... 详细信息
来源: 评论
TIME-VARYING GRAPH SIGNAL INPAINTING VIA unrolling NETWORKS
TIME-VARYING GRAPH SIGNAL INPAINTING VIA UNROLLING NETWORKS
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Chen, Siheng Eldar, Yonina C. Mitsubishi Elect Res Labs Cambridge MA 02139 USA Weizmann Inst Sci Rehovot Israel
We propose an interpretable graph neural network based on algorithm unrolling to reconstruct a time-varying graph signal from partial measurements. The proposed graph unrolling networks expand algorithm unrolling to t... 详细信息
来源: 评论
AN ADMM BASED NETWORK FOR HYPERSPECTRAL UNMIXING TASKS
AN ADMM BASED NETWORK FOR HYPERSPECTRAL UNMIXING TASKS
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhou, Chao Rodrigues, Miguel R. D. UCL Dept Elect & Elect Engn London England
In this paper, we use algorithm unrolling approaches in order to design a new neural network structure applicable to hyperspectral unmixing challenges. In particular, building upon a constrained sparse regression form... 详细信息
来源: 评论
IMPROVED SUPERVISED TRAINING OF PHYSICS-GUIDED DEEP LEARNING IMAGE RECONSTRUCTION WITH MULTI-MASKING
IMPROVED SUPERVISED TRAINING OF PHYSICS-GUIDED DEEP LEARNING...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Yaman, Burhaneddin Hosseini, Seyed Amir Hossein Moeller, Steen Akcakaya, Mehmet Univ Minnesota Elect & Comp Engn Minneapolis MN 55455 USA Univ Minnesota Ctr Magnet Resonance Res Minneapolis MN 55455 USA
Physics-guided deep learning (PG-DL) via algorithm unrolling has received significant interest for improved image reconstruction, including MRI applications. These methods unroll an iterative optimization algorithm in... 详细信息
来源: 评论
Learning the sparse prior: Modern approaches
收藏 引用
Wiley Interdisciplinary Reviews: Computational Statistics 2024年 第1期16卷 e1646-e1646页
作者: Peng, Guan-Ju Institute of Data Science and Information Computing National Chung Hsing University Taichung Taiwan
The sparse prior has been widely adopted to establish data models for numerous applications. In this context, most of them are based on one of three foundational paradigms: the conventional sparse representation, the ... 详细信息
来源: 评论
Learning to optimize: a primer and a benchmark
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2022年 第1期23卷 8562-8620页
作者: Tianlong Chen Xiaohan Chen Wuyang Chen Zhangyang Wang Howard Heaton Jialin Liu Wotao Yin Department of Electrical and Computer and Engineering The University of Texas at Austin Austin TX Typal Research Typal LLC Los Angeles CA Alibaba US Damo Academy Decision Intelligence Lab Bellevue WA
Learning to optimize (L2O) is an emerging approach that leverages machine learning to develop optimization methods, aiming at reducing the laborious iterations of hand engineering. It automates the design of an optimi... 详细信息
来源: 评论