Frequent subgraph mining(FSM) is a subset of the graph mining domain that is extensively used for graph classification and clustering. Over the past decade, many efficient FSM algorithms have been developed with impro...
详细信息
Frequent subgraph mining(FSM) is a subset of the graph mining domain that is extensively used for graph classification and clustering. Over the past decade, many efficient FSM algorithms have been developed with improvements generally focused on reducing the time complexity by changing the algorithm structure or using parallel programming techniques. FSM algorithms also require high memory consumption, which is another problem that should be solved. In this paper, we propose a new approach called Predictive dynamic sized structure packing(PDSSP) to minimize the memory needs of FSM algorithms. Our approach redesigns the internal data structures of FSM algorithms without making algorithmic modifications. PDSSP offers two contributions. The first is the Dynamic Sized Integer Type, a newly designed unsigned integer data type, and the second is a data structure packing technique to change the behavior of the compiler. We examined the effectiveness and efficiency of the PDSSP approach by experimentally embedding it into two state-of-the-art algorithms, g Span and *** compared our implementations to the performance of the originals. Nearly all results show that our proposed implementation consumes less memory at each support level, suggesting that PDSSP extensions could save memory, with peak memory usage decreasing up to 38% depending on the dataset.
In this paper, we analyze algorithmic and architectural characteristics of a class of particle filters known as Gaussian Particle Filters (GPFs). GPFs approximate the posterior density of the unknowns with a Gaussian ...
详细信息
In this paper, we analyze algorithmic and architectural characteristics of a class of particle filters known as Gaussian Particle Filters (GPFs). GPFs approximate the posterior density of the unknowns with a Gaussian distribution which limits the scope of their applications in comparison with the universally applied sample-importance resampling filters (SIRFs) but allows for their implementation without the classical resampling procedure. Since there is no need for resampling, we propose a modified GPF algorithm that is suitable for parallel hardware realization. Based on the new algorithm, we propose an efficient parallel and pipelined architecture for GPF that is superior to similar architectures for SIRF in the sense that it requires no memories for storing particles and it has very low amount of data exchange through the communication network. We analyze the GPF on the bearings-only tracking problem and the results are compared with results obtained by SIRF in terms of computational complexity, potential throughput, and hardware energy. We consider implementation on FPGAs and we perform detailed comparison of the GPF and SIRF algorithms implemented in different ways on this platform. GPFs that are implemented in parallel pipelined fashion on FPGAs can support higher sampling rates than SIRFs and as such they might be a more suitable candidate for real-time applications.
暂无评论