咨询与建议

限定检索结果

文献类型

  • 12 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 13 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 12 篇 理学
    • 7 篇 统计学(可授理学、...
    • 6 篇 数学
    • 2 篇 物理学
    • 2 篇 化学
  • 7 篇 工学
    • 5 篇 计算机科学与技术...
    • 1 篇 仪器科学与技术
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 化学工程与技术
    • 1 篇 软件工程
  • 2 篇 教育学
    • 2 篇 心理学(可授教育学...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 13 篇 alternating leas...
  • 3 篇 optimal scaling
  • 2 篇 acceleration of ...
  • 2 篇 parafac
  • 2 篇 dimensional redu...
  • 2 篇 vector epsilon a...
  • 1 篇 candecomp/parafa...
  • 1 篇 loading matrixes
  • 1 篇 functional linea...
  • 1 篇 knowledge centri...
  • 1 篇 quantification
  • 1 篇 fuzzy clusterwis...
  • 1 篇 homogeneity
  • 1 篇 nonlinear princi...
  • 1 篇 forwarding
  • 1 篇 tree-structured ...
  • 1 篇 canonical tensor...
  • 1 篇 restarting proce...
  • 1 篇 underlying facto...
  • 1 篇 quantum recommen...

机构

  • 2 篇 hunan univ coll ...
  • 1 篇 mcgill univ dept...
  • 1 篇 katholieke univ ...
  • 1 篇 ctr hec isa dept...
  • 1 篇 okayama univ ins...
  • 1 篇 okayama univ sci...
  • 1 篇 okayama univ sci...
  • 1 篇 yale univ progra...
  • 1 篇 beijing univ tec...
  • 1 篇 swiss fed inst t...
  • 1 篇 okayama univ sci...
  • 1 篇 okayama univ gra...
  • 1 篇 natl renewable e...
  • 1 篇 doshisha univ fa...
  • 1 篇 univ colorado de...
  • 1 篇 univ sci & techn...
  • 1 篇 concordia univ d...
  • 1 篇 okayama univ sci...
  • 1 篇 okayama univ gra...
  • 1 篇 kyoto womens uni...

作者

  • 3 篇 kuroda masahiro
  • 3 篇 mori yuichi
  • 2 篇 li y
  • 2 篇 yu rq
  • 2 篇 sakakihara michi...
  • 2 篇 iizuka masaya
  • 2 篇 chen zp
  • 1 篇 gao shang
  • 1 篇 beylkin gregory
  • 1 篇 tsuchida jun
  • 1 篇 wu hl
  • 1 篇 chen shuangwu
  • 1 篇 masaya iizuka
  • 1 篇 depril dirk
  • 1 篇 tenenhaus m
  • 1 篇 yang yu-guang
  • 1 篇 wilderjans tom f...
  • 1 篇 tan tianyu
  • 1 篇 etter simon
  • 1 篇 suk hye won

语言

  • 11 篇 英文
  • 2 篇 其他
检索条件"主题词=alternating least squares algorithm"
13 条 记 录,以下是1-10 订阅
排序:
Speeding up the convergence of the alternating least squares algorithm using vector ε acceleration and restarting for nonlinear principal component analysis
收藏 引用
COMPUTATIONAL STATISTICS 2023年 第1期38卷 243-262页
作者: Kuroda, Masahiro Mori, Yuichi Iizuka, Masaya Okayama Univ Sci Dept Management Kita Ku 1-1 Ridaicho Okayama 7000005 Japan Okayama Univ Inst Educ & Student Serv Kita Ku 2-1-1 Tsushima Naka Okayama 7008530 Japan
Principal component analysis (PCA) is a widely used descriptive multivariate technique in the analysis of quantitative data. When applying PCA to mixed quantitative and qualitative data, we utilize an optimal scaling ... 详细信息
来源: 评论
A novel quantum recommender system
收藏 引用
PHYSICA SCRIPTA 2023年 第1期98卷 010001-010001页
作者: Gao, Shang Yang, Yu-Guang Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China
Recommendation system is a kind of information filtering system, which plays an increasingly important role in the era of big data. In this work, we present a novel quantum recommender system, which can also be regard... 详细信息
来源: 评论
Canonical Dependency Analysis Using a Bias-Corrected χ2 Statistics Matrix
收藏 引用
JOURNAL OF STATISTICAL THEORY AND PRACTICE 2024年 第1期18卷 7-7页
作者: Tsuchida, Jun Yadohisa, Hiroshi Kyoto Womens Univ Fac Data Sci Kyoto Japan Doshisha Univ Fac Culture & Informat Sci Kyoto Japan
Canonical correlation and canonical covariance analyses are popular dimensional reduction methods when managing two datasets. Because these methods seek a subspace maximizing correlation (or covariance), it is not sui... 详细信息
来源: 评论
Acceleration of the alternating least squares algorithm for principal components analysis
收藏 引用
COMPUTATIONAL STATISTICS & DATA ANALYSIS 2011年 第1期55卷 143-153页
作者: Kuroda, Masahiro Mori, Yuichi Iizuka, Masaya Sakakihara, Michio Okayama Univ Sci Dept Socioinformat Kita Ku Okayama 7000005 Japan Okayama Univ Grad Sch Environm Sci Kita Ku Okayama 7008530 Japan Okayama Univ Sci Dept Informat Sci Kita Ku Okayama 7000005 Japan
Principal components analysis (PCA) is a popular descriptive multivariate method for handling quantitative data and it can be extended to deal with qualitative data and mixed measurement level data. The existing algor... 详细信息
来源: 评论
An Information Feature Extraction and Rapid Updating Scheme for Knowledge Centric Networking
An Information Feature Extraction and Rapid Updating Scheme ...
收藏 引用
International Conference on Computing, Networking and Communications (ICNC)
作者: Zhang, Qi Jiang, Xiaofeng Chen, Shuangwu Xie, Jinsen Yang, Jian Xing, Ling Univ Sci & Technol China Sch Informat Sci & Technol Hefei Anhui Peoples R China Southwest Univ Sci & Technol Mianyang Sichuan Peoples R China Henan Univ Sci & Technol Sch Informat Engn Luoyang Peoples R China
Knowledge centric networking (KCN) is a new future internet paradigm that directly accesses key content by assigning each piece of the content a unique knowledge identifier. Knowledge transmission is realized via know... 详细信息
来源: 评论
PARALLEL ALS algorithm FOR SOLVING LINEAR SYSTEMS IN THE HIERARCHICAL TUCKER REPRESENTATION
收藏 引用
SIAM JOURNAL ON SCIENTIFIC COMPUTING 2016年 第4期38卷 A2585-A2609页
作者: Etter, Simon Swiss Fed Inst Technol CH-8092 Zurich Switzerland
Tensor network formats are an efficient tool for numerical computations in many dimensions, yet even this tool often becomes too time-and memory-consuming for a single compute node when applied to problems of scientif... 详细信息
来源: 评论
Randomized interpolative decomposition of separated representations
收藏 引用
JOURNAL OF COMPUTATIONAL PHYSICS 2015年 281卷 116-134页
作者: Biagioni, David J. Beylkin, Daniel Beylkin, Gregory Natl Renewable Energy Lab Computat Sci Ctr Golden CO 80401 USA Yale Univ Program Appl Math New Haven CT 06511 USA Univ Colorado Dept Appl Math Boulder CO 80309 USA
We introduce an algorithm to compute tensor interpolative decomposition(dubbed CTDID) for the reduction of the separation rank of Canonical Tensor Decompositions (CTDs). Tensor ID selects, for a user-defined accuracy ... 详细信息
来源: 评论
alternating least squares in nonlinear principal components
收藏 引用
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS 2013年 第6期5卷 456-464页
作者: Kuroda, Masahiro Mori, Yuichi Masaya, Iizuka Sakakihara, Michio Okayama Univ Sci Fac Informat Dept Socio Informat Okayama Japan Okayama Univ Grad Sch Environm Sci Okayama Japan Okayama Univ Sci Fac Informat Dept Informat Sci Okayama Japan
Principal components analysis (PCA) is probably the most popular descriptive multivariate method for analyzing quantitative data with ratio and interval scale measures. When applying PCA to nominal and ordinal data, t... 详细信息
来源: 评论
Functional fuzzy clusterwise regression analysis
收藏 引用
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION 2013年 第1期7卷 57-82页
作者: Tan, Tianyu Suk, Hye Won Hwang, Heungsun Lim, Jooseop McGill Univ Dept Psychol Montreal PQ H3A 1B1 Canada Concordia Univ Dept Mkt Montreal PQ Canada
We propose a functional extension of fuzzy clusterwise regression, which estimates fuzzy memberships of clusters and regression coefficient functions for each cluster simultaneously. The proposed method permits depend... 详细信息
来源: 评论
Lowdimensional Additive Overlapping Clustering
收藏 引用
JOURNAL OF CLASSIFICATION 2012年 第3期29卷 297-320页
作者: Depril, Dirk Van Mechelen, Iven Wilderjans, Tom F. Katholieke Univ Leuven Fac Psychol & Educ Sci B-3000 Louvain Belgium
To reveal the structure underlying two-way two-mode object by variable data, Mirkin (1987) has proposed an additive overlapping clustering model. This model implies an overlapping clustering of the objects and a recon... 详细信息
来源: 评论