Sodium metal batteries (SMBs) are considered as strong alternatives to lithium -ion batteries (LIBs), due to the inherent merits of sodium metal anodes (SMAs) including low redox potential (-2.71 V vs. SHE), high theo...
详细信息
Sodium metal batteries (SMBs) are considered as strong alternatives to lithium -ion batteries (LIBs), due to the inherent merits of sodium metal anodes (SMAs) including low redox potential (-2.71 V vs. SHE), high theoretical capacity (1166 mAh g -1 ), and abundant resources. However, the uncontrollable Na dendrite growth has significantly impeded the practical deployment of SMBs. separator modification has emerged as an effective strategy for substantially enhancing the performance of SMAs. Herein, for the first time, we present the successful grafting polyacrylic acid (PAA) onto polypropylene (PP) separators (denoted as PP-g-PAA) using highly efficient electron beam (EB) irradiation to improve the cyclability of SMAs. The polar carboxyl groups of PAA can facilitate the electrolyte wetting and provide ample mechanical strength to resist dendrite penetration. Consequently, the regulation of Na + ion flux enables uniform Na + deposition with dendrite -free morphology, facilitated by the favorable anode/separator interface. The PP-g-PAA separator significantly enhances the cyclability of fabricated cells. Notably, the lifespan of Na||Na symmetric cells can be extended up to 5519 h at 1 mA cm -2 and 1 mAh cm -2 . The stable design of the anode/separator interface achieved through polyolefin separator modification presented in this study holds promise for the further advancement of next -generation advanced battery systems.
Uncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail...
详细信息
Uncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail to effectively inhibit upward dendrite growth that punctures through the separator. Here, we introduce a novel "orientated-growth" strategy that transfers the main depositional interface to the anode/current collector interface from the anode/separator interface. We placed a layer of cellulose/graphene carbon composite aerogel (CCA) between the current collector and the anode (LCL-bottom). This layer works as a charge organizer that induces a high current density and encourages Li to deposit at the anode/current collector interface. Both in situ and ex situ images of the electrode demonstrate that the anode part of the cell has been flipped;with the newly deposited particles facing the current collector and the smooth surface facing the separator. The electrode in half and full cells showed outstanding cyclic stability and rate capability, with the LCL-bottom/LFP full cell capable of maintaining 94% of its initial capacity after 1000 cycles.
Uncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail...
详细信息
Uncontrolled dendrite formation in the high energy density of lithium (Li) metal batteries (LMBs) may pose serious safety risks. While numerous studies have attempted to protect separators, these proposed methods fail to effectively inhibit upward dendrite growth that punctures through the separator. Here, we introduce a novel “orientated-growth” strategy that transfers the main depositional interface to the anode/current collector interface from the anode/separator interface. We placed a layer of cellulose/graphene carbon composite aerogel (CCA) between the current collector and the anode (LCL-bottom). This layer works as a charge organizer that induces a high current density and encourages Li to deposit at the anode/current collector interface. Both in situ and ex situ images of the electrode demonstrate that the anode part of the cell has been flipped; with the newly deposited particles facing the current collector and the smooth surface facing the separator. The electrode in half and full cells showed outstanding cyclic stability and rate capability, with the LCL-bottom/LFP full cell capable of maintaining 94 % of its initial capacity after 1000 cycles.
暂无评论