咨询与建议

限定检索结果

文献类型

  • 21 篇 期刊文献
  • 18 篇 会议

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 39 篇 工学
    • 31 篇 计算机科学与技术...
    • 14 篇 电气工程
    • 5 篇 控制科学与工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 纺织科学与工程
    • 1 篇 软件工程
    • 1 篇 生物工程
  • 9 篇 医学
    • 5 篇 特种医学
    • 3 篇 临床医学
    • 1 篇 医学技术(可授医学...
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 物理学

主题

  • 39 篇 anomaly segmenta...
  • 20 篇 anomaly detectio...
  • 8 篇 unsupervised lea...
  • 6 篇 feature extracti...
  • 5 篇 image reconstruc...
  • 4 篇 deep learning
  • 4 篇 image segmentati...
  • 4 篇 training
  • 3 篇 semantic segment...
  • 3 篇 knowledge distil...
  • 3 篇 defect detection
  • 2 篇 covid-19
  • 2 篇 vision transform...
  • 2 篇 task analysis
  • 2 篇 informatics
  • 2 篇 mvtec
  • 2 篇 colonoscopy
  • 2 篇 image resynthesi...
  • 2 篇 autoencoder
  • 2 篇 anomaly

机构

  • 2 篇 nanyang technol ...
  • 2 篇 nanyang technol ...
  • 2 篇 chinese acad sci...
  • 2 篇 huazhong univ sc...
  • 2 篇 chinese acad sci...
  • 2 篇 univ chinese aca...
  • 2 篇 rhein westfal th...
  • 1 篇 vicomtech fdn ba...
  • 1 篇 lamarr inst mach...
  • 1 篇 univ udine udine
  • 1 篇 guangxi univ sch...
  • 1 篇 china univ min &...
  • 1 篇 helmholtz ctr mu...
  • 1 篇 univ pisa pisa
  • 1 篇 tencent algorith...
  • 1 篇 univ adelaide fa...
  • 1 篇 klinikum rechts ...
  • 1 篇 univ tubingen tu...
  • 1 篇 natl yang ming c...
  • 1 篇 indian inst info...

作者

  • 2 篇 albarqouni shadi
  • 2 篇 verjans johan w.
  • 2 篇 dai wenting
  • 2 篇 costanzino alex
  • 2 篇 chen yuanhong
  • 2 篇 di stefano luigi
  • 2 篇 wan qian
  • 2 篇 singh rajvinder
  • 2 篇 liu fengbei
  • 2 篇 rippel oliver
  • 2 篇 erdt marius
  • 2 篇 liu yuyuan
  • 2 篇 shi yong
  • 2 篇 lisanti giuseppe
  • 2 篇 carneiro gustavo
  • 2 篇 ramirez pierluig...
  • 2 篇 sourin alexei
  • 2 篇 yang jie
  • 2 篇 merhof dorit
  • 2 篇 tian yu

语言

  • 38 篇 英文
  • 1 篇 中文
检索条件"主题词=anomaly segmentation"
39 条 记 录,以下是1-10 订阅
排序:
Dual-Branch Knowledge Distillation via Residual Features Aggregation Module for anomaly segmentation
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2025年 74卷
作者: Zhou, You Huang, Zihao Zeng, Deyu Qu, Yanyun Wu, Zongze Shenzhen Univ Coll Mechatron & Control Engn Shenzhen 518060 Peoples R China Tencent Algorithm Applicat Dev Dept Guangzhou 510300 Peoples R China Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen 518060 Peoples R China Xiamen Univ Sch Informat Xiamen 361005 Peoples R China
Unsupervised image anomaly detection and segmentation algorithms are of great significance in the actual industrial quality inspection process. The anomaly detection method, based on the knowledge distillation framewo... 详细信息
来源: 评论
anomaly detection and segmentation in industrial images using multi-scale reverse distillation
收藏 引用
APPLIED SOFT COMPUTING 2025年 168卷
作者: Liu, Chien-Liang Chung, Chia-Chen Natl Yang Ming Chiao Tung Univ Dept Ind Engn & Management 1001 Univ Rd Hsinchu 300 Taiwan
anomaly detection and segmentation in industrial images are critical tasks requiring robust and precise methodologies. This paper presents the Multi-Scale Reverse Distillation (MSRD) methodology, an innovative improve... 详细信息
来源: 评论
Unsupervised anomaly segmentation via deep feature reconstruction
收藏 引用
NEUROCOMPUTING 2021年 424卷 9-22页
作者: Shi, Yong Yang, Jie Qi, Zhiquan Univ Chinese Acad Sci Sch Econ & Management Beijing 101408 Peoples R China Univ Chinese Acad Sci Sch Comp & Technol Beijing 101408 Peoples R China Chinese Acad Sci Res Ctr Fictitious Econ & Data Sci Beijing 100190 Peoples R China Chinese Acad Sci Key Lab Big Data Min & Knowledge Management Beijing 100190 Peoples R China Univ Nebraska Coll Informat Sci & Technol Omaha NE 68182 USA
Automatic detecting anomalous regions in images of objects or textures without priors of the anomalies is challenging, especially when the anomalies appear in very small areas of the images, making difficult to-detect... 详细信息
来源: 评论
Unsupervised intrusion detection for rail transit based on anomaly segmentation
收藏 引用
SIGNAL IMAGE AND VIDEO PROCESSING 2024年 第2期18卷 1079-1087页
作者: Shen, Yixin He, Deqiang Liu, Qi Jin, Zhenzhen Li, Xianwang Ren, Chonghui Guangxi Univ Sch Mech Engn Guangxi Key Lab Mfg Syst & Adv Mfg Technol Nanning 530004 Guangxi Peoples R China Nanning Rail Transit Co Ltd Nanning 530029 Guangxi Peoples R China
Detecting intrusions in rail transit can be challenging using traditional supervised methods, as they only detect target categories present in the training dataset and require extensive manual annotations. This paper ... 详细信息
来源: 评论
Deep Feature Contrasting for Industrial Image anomaly segmentation
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2024年 73卷 1页
作者: Wan, Qian Cao, Yunkang Gao, Liang Li, Xinyu Gao, Yiping Huazhong Univ Sci & Technol Sch Mech Sci & Engn State Key Lab Digital Mfg Equipment & Technol Wuhan 430074 Peoples R China
Industrial image anomaly segmentation is pivotal in ensuring the quality inspection of products within intelligent manufacturing systems. Recent research efforts have predominantly focused on deep learning-based appro... 详细信息
来源: 评论
Test Time Training for Industrial anomaly segmentation
Test Time Training for Industrial Anomaly Segmentation
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Costanzino, Alex Ramirez, Pierluigi Zama Del Moro, Mirko Aiezzo, Agostino Lisanti, Giuseppe Salti, Samuele Di Stefano, Luigi Univ Bologna CVLAB Dept Comp Sci & Engn DISI Bologna Italy
anomaly Detection and segmentation (AD&S) is crucial for industrial quality control. While existing methods excel in generating anomaly scores for each pixel, practical applications require producing a binary segm... 详细信息
来源: 评论
Predictable Uncertainty-Aware Unsupervised Deep anomaly segmentation
Predictable Uncertainty-Aware Unsupervised Deep Anomaly Segm...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Sato, Kazuki Hama, Kenta Matsubara, Takashi Uehara, Kuniaki Kobe Univ Grad Sch Syst Informat Nada Ku 1-1 Rokkodai Kobe Hyogo 6578501 Japan
Image-based anomaly segmentation is a fundamental topic for image analysis. For medical use, it supports treatments via refined diagnosis and growth rate evaluation of tumors and lesions. Especially, an unsupervised t... 详细信息
来源: 评论
Improving anomaly segmentation with Multi-Granularity Cross-Domain Alignment  23
Improving Anomaly Segmentation with Multi-Granularity Cross-...
收藏 引用
31st ACM International Conference on Multimedia (MM)
作者: Zhang, Ji Wu, Xiao Cheng, Zhi-Qi He, Qi Li, Wei Southwest Jiaotong Univ Chengdu Peoples R China Minist Educ China Engn Res Ctr Sustainable Urban Intelligent Transp Chengdu Peoples R China Carnegie Mellon Univ Sch Comp Sci Language Technol Inst Pittsburgh PA 15213 USA
anomaly segmentation plays a crucial role in identifying anomalous objects within images, which facilitates the detection of road anomalies for autonomous driving. Although existing methods have shown impressive resul... 详细信息
来源: 评论
Transformer Based Models for Unsupervised anomaly segmentation in Brain MR Images  8th
Transformer Based Models for Unsupervised Anomaly Segmentati...
收藏 引用
8th International Workshop on Brain Lesion - Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes)
作者: Ghorbel, Ahmed Aldahdooh, Ahmed Albarqouni, Shadi Hamidouche, Wassim Univ Rennes INSA Rennes CNRS IETR UMR 6164 20 Av Buttes Coesmes F-35700 Rennes France Univ Hosp Bonn Venusberg Campus 1 D-53127 Bonn Germany Helmholtz Munich Ingolstadter Landstr 1 D-85764 Neuherberg Germany Tech Univ Munich Boltzmannstr 3 D-85748 Garching Germany
The quality of patient care associated with diagnostic radiology is proportionate to a physician's workload. segmentation is a fundamental limiting precursor to both diagnostic and therapeutic procedures. Advances... 详细信息
来源: 评论
The anomaly segmentation via dynamic branch fusion
The anomaly segmentation via dynamic branch fusion
收藏 引用
9th IEEE International Conference on Big Data (IEEE BigData)
作者: Liu, Zihang Zhou, Ejian Yang, Shuwen Zhuang, Zisong Ma, Tianlong East China Normal Univ Shanghai Peoples R China
anomaly segmentation is an important task in computer vision. At present, anomaly segmentation has achieved milestone development. Many representative works have been proposed, especially unsupervised learning methods... 详细信息
来源: 评论