Electric vehicle (EV) power system is the key to the development of EVs. If direct current (DC) arc occurs in the power system, it is difficult to extinguish at zero point. The arc fault will release a huge amount of ...
详细信息
Electric vehicle (EV) power system is the key to the development of EVs. If direct current (DC) arc occurs in the power system, it is difficult to extinguish at zero point. The arc fault will release a huge amount of energy and continuous sparking, which may cause spontaneous combustion or even explosion. In this study, an arc detection algorithm based on the classification of windowed Fourier transform and support vector machine (SVM) model is proposed for DC serial arcdetection of EV power system. In order to optimise the arc detection algorithm, the authors use the pre-detectionalgorithm, which can effectively reduce the false detection rate of DC arc fault and ensure the reliability of detectionalgorithm. In addition, they propose an arc fault data enhancement model, which can generate arc fault current data. Finally, the experimental results show that the arc detection algorithm has a high accuracy and a false detection rate of 0%. After data enhancement, it has generalisation of the SVM classification model under the condition of high power experiment.
暂无评论