咨询与建议

限定检索结果

文献类型

  • 104 篇 学位论文
  • 7 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 112 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 5 篇 工学
    • 3 篇 计算机科学与技术...
    • 1 篇 仪器科学与技术
    • 1 篇 电气工程
    • 1 篇 控制科学与工程
    • 1 篇 环境科学与工程(可...
  • 3 篇 管理学
    • 3 篇 工商管理
    • 2 篇 管理科学与工程(可...
  • 2 篇 理学
    • 1 篇 化学
    • 1 篇 天文学
    • 1 篇 大气科学
    • 1 篇 地球物理学
    • 1 篇 地质学
    • 1 篇 生物学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...

主题

  • 112 篇 artificial intel...
  • 25 篇 other computer s...
  • 17 篇 deep learning
  • 17 篇 computer science...
  • 16 篇 machine learning
  • 14 篇 information secu...
  • 12 篇 databases and in...
  • 6 篇 graphics and hum...
  • 5 篇 theory and algor...
  • 5 篇 computer vision
  • 4 篇 svm
  • 4 篇 neural networks
  • 4 篇 yolo
  • 3 篇 reinforcement le...
  • 3 篇 robotic competit...
  • 3 篇 software enginee...
  • 3 篇 natural language...
  • 3 篇 cnn
  • 3 篇 os and networks
  • 3 篇 bioinformatics

机构

  • 59 篇 san jose state u...
  • 24 篇 university of ma...
  • 2 篇 california polyt...
  • 2 篇 georgia southern...
  • 2 篇 new jersey insti...
  • 2 篇 university of co...
  • 1 篇 amity univ amity...
  • 1 篇 univ nottingham ...
  • 1 篇 western michigan...
  • 1 篇 department of co...
  • 1 篇 wayne state univ...
  • 1 篇 edith cowan univ...
  • 1 篇 univ groningen c...
  • 1 篇 autonomous intel...
  • 1 篇 department of re...
  • 1 篇 univ south pacif...
  • 1 篇 univ chile dept ...
  • 1 篇 university of ne...
  • 1 篇 natl univ sci & ...
  • 1 篇 faculty of envir...

作者

  • 1 篇 ha le thanh
  • 1 篇 ashraf saber
  • 1 篇 komei sugiura
  • 1 篇 niket bhodia
  • 1 篇 anish hemant nar...
  • 1 篇 samanvitha basol...
  • 1 篇 neha atul bhagwa...
  • 1 篇 jr anthony s bus...
  • 1 篇 nicholas a russo
  • 1 篇 preethi sundarav...
  • 1 篇 michael j. brice
  • 1 篇 takeshi takahash...
  • 1 篇 iocchi luca
  • 1 篇 siddharth kumar
  • 1 篇 afaq anam
  • 1 篇 liu yang
  • 1 篇 hurt jason lee
  • 1 篇 muthaiah ramanat...
  • 1 篇 natesh ganesh
  • 1 篇 mehtab iqbal

语言

  • 112 篇 英文
检索条件"主题词=artificial intelligence and robotics"
112 条 记 录,以下是51-60 订阅
排序:
Breaking Audio Captcha Using Machine Learning/Deep Learning And Related Defense Mechanism
Breaking Audio Captcha Using Machine Learning/Deep Learning ...
收藏 引用
作者: Heemany Shekhar San Jose State University
学位级别:硕士
CAPTCHA is a web-based authentication method used by websites to distinguish between humans (valid users) and bots(attackers). Audio captcha is an accessible captcha meant for the visually disabled section of users su... 详细信息
来源: 评论
Tsar: A System For Defending Hate Speech Detection Models Against Adversaries
Tsar: A System For Defending Hate Speech Detection Models Ag...
收藏 引用
作者: Brian Tuan Khieu San Jose State University
学位级别:硕士
Although current state-of-the-art hate speech detection models achieve praiseworthy results, these models have shown themselves to be vulnerable to attack. Easy to execute lexical manipulations such as the removal of ... 详细信息
来源: 评论
Detecting Crispr Arrays Using Long-Short Term Memory Network
Detecting Crispr Arrays Using Long-Short Term Memory Network
收藏 引用
作者: Shantanu Deshmukh San Jose State University
学位级别:硕士
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeat) is a se- quence found in the DNA sequence of an organism. It provides provides immunity to the organism. Recently, it was found that the CRISPR-based i... 详细信息
来源: 评论
An Ensemble Model For Click Through Rate Prediction
An Ensemble Model For Click Through Rate Prediction
收藏 引用
作者: Muthaiah Ramanathan San Jose State University
学位级别:硕士
Internet has become the most prominent and accessible way to spread the news about an event or to pitch, advertise and sell a product, globally. The success of any advertisement campaign lies in reaching the right cla... 详细信息
来源: 评论
Stock Market Prediction Using Ensemble Of Graph Theory, Machine Learning And Deep Learning Models
Stock Market Prediction Using Ensemble Of Graph Theory, Mach...
收藏 引用
作者: Pratik Patil San Jose State University
学位级别:硕士
Efficient Market Hypothesis (EMH) is the cornerstone of the modern financial theory and it states that it is impossible to predict the price of any stock using any trend, fundamental or technical analysis. Stock tradi... 详细信息
来源: 评论
Learning To Play The Trading Game
Learning To Play The Trading Game
收藏 引用
作者: Neeraj Kulkarni San Jose State University
学位级别:硕士
Can we train a stock trading bot that can take decisions in high-entropy envi- ronments like stock markets to generate profits based on some optimal policy? Can we further extend this learning for any general trading ... 详细信息
来源: 评论
Classification Of Malware Models
Classification Of Malware Models
收藏 引用
作者: Akriti Sethi San Jose State University
学位级别:硕士
Automatically classifying similar malware families is a challenging problem. In this research, we attempt to classify malware families by applying machine learning to machine learning models. Specifically, we train hi... 详细信息
来源: 评论
Neural Generative Models and Representation Learning for Information Retrieval
Neural Generative Models and Representation Learning for Inf...
收藏 引用
作者: Qingyao Ai University of Massachusetts Amherst
学位级别:博士
Information Retrieval (IR) concerns about the structure, analysis, organization, storage, and retrieval of information. Among different retrieval models proposed in the past decades, generative retrieval models, espec... 详细信息
来源: 评论
Sensor - Based Human Activity Recognition Using Smartphones
Sensor - Based Human Activity Recognition Using Smartphones
收藏 引用
作者: Mustafa Badshah San Jose State University
学位级别:硕士
It is a significant technical and computational task to provide precise information regarding the activity performed by a human and find patterns of their behavior. Countless applications can be molded and various pro... 详细信息
来源: 评论
Detecting Cars In A Parking Lot Using Deep Learning
Detecting Cars In A Parking Lot Using Deep Learning
收藏 引用
作者: Samuel Ordonia San Jose State University
学位级别:硕士
Detection of cars in a parking lot with deep learning involves locating all objects of interest in a parking lot image and classifying the contents of all bounding boxes as cars. Because of the variety of shape, color... 详细信息
来源: 评论