咨询与建议

限定检索结果

文献类型

  • 2,596 篇 期刊文献
  • 1,662 篇 会议
  • 37 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,953 篇 工学
    • 2,467 篇 计算机科学与技术...
    • 1,595 篇 电气工程
    • 698 篇 信息与通信工程
    • 426 篇 控制科学与工程
    • 385 篇 软件工程
    • 272 篇 仪器科学与技术
    • 166 篇 机械工程
    • 165 篇 生物医学工程(可授...
    • 153 篇 测绘科学与技术
    • 150 篇 电子科学与技术(可...
    • 99 篇 石油与天然气工程
    • 81 篇 环境科学与工程(可...
    • 78 篇 交通运输工程
    • 74 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 63 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 41 篇 生物工程
    • 40 篇 安全科学与工程
  • 874 篇 理学
    • 287 篇 物理学
    • 247 篇 生物学
    • 156 篇 化学
    • 139 篇 地球物理学
    • 132 篇 数学
  • 552 篇 医学
    • 342 篇 临床医学
    • 126 篇 基础医学(可授医学...
    • 84 篇 特种医学
  • 382 篇 管理学
    • 326 篇 管理科学与工程(可...
  • 75 篇 农学
  • 22 篇 经济学
  • 22 篇 法学
  • 16 篇 文学
  • 14 篇 艺术学
  • 12 篇 教育学
  • 3 篇 哲学
  • 2 篇 军事学

主题

  • 4,298 篇 autoencoder
  • 1,046 篇 deep learning
  • 431 篇 anomaly detectio...
  • 369 篇 machine learning
  • 241 篇 feature extracti...
  • 155 篇 convolutional ne...
  • 152 篇 neural network
  • 151 篇 unsupervised lea...
  • 130 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 105 篇 dimensionality r...
  • 82 篇 cnn
  • 80 篇 clustering
  • 79 篇 representation l...
  • 79 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 17 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 8 篇 zhang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 zhang kai
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 zhang hao
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai

语言

  • 4,086 篇 英文
  • 163 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 4 篇 法文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4298 条 记 录,以下是1061-1070 订阅
Multi-local Collaborative autoencoder
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2022年 239卷 107844-107844页
作者: Chu, Jielei Wang, Hongjun Liu, Jing Gong, Zhiguo Li, Tianrui Southwest Jiaotong Univ Sch Comp & Artificial Intelligence Chengdu 611756 Peoples R China Southwest Jiaotong Univ Inst Artificial Intelligence Chengdu 611756 Peoples R China Sichuan Univ Sch Business Chengdu 610065 Sichuan Peoples R China Univ Macau Dept Comp & Informat Sci State Key Lab Internet Things Smart City Macau Peoples R China
The excellent performance of representation learning of autoencoders have attracted considerable interest in various applications. However, the structure and multi-local collaborative relationships of unlabeled data a... 详细信息
来源: 评论
A TWO-STAGE autoencoder FOR VISUAL ANOMALY DETECTION
A TWO-STAGE AUTOENCODER FOR VISUAL ANOMALY DETECTION
收藏 引用
IEEE International Conference on Image Processing (ICIP)
作者: Zhu, Yezhou Wang, Jianzhu Zhang, Jing Li, Qingyong Beijing Jiaotong Univ Beijing Key Lab Traff Data Anal & Min Beijing Peoples R China
Deep convolutional autoencoder (DCAE) is usually optimized to minimize the difference between the input and the reconstruction, and the reconstruction error has been widely used as an indicator for visual anomaly dete... 详细信息
来源: 评论
Deep Learning Solution for Pathological Voice Detection using LSTM-based autoencoder Hybrid with Multi-Task Learning  14
Deep Learning Solution for Pathological Voice Detection usin...
收藏 引用
14th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC) / 14th Int Conf on Bio-inspired Systems and Signal Processing (BIOSIGNALS) / 14th Int Conf on Biomedical Electronics and Devices (BIODEVICES)
作者: Sztaho, David Gabor, Kiss Gabriel, Tulics Miklos Budapest Univ Technol & Econ Dept Telecommun & Media Informat Magyar Tudosok Kortuja 2 Budapest Hungary
In this paper, a deep learning approach is introduced to detect pathological voice disorders from continuous speech. Speech as bio-signal is getting more and more attention as a discriminant for different diseases. To... 详细信息
来源: 评论
An effective GPU-based random grid secret sharing using an autoencoder image super-resolution
收藏 引用
COGENT ENGINEERING 2024年 第1期11卷
作者: Holla, M. Raviraja Suma, D. Manipal Acad Higher Educ MAHE Manipal Inst Technol Dept Informat & Commun Technol Manipal India
Visual crypto-system is a class of cryptography intended to secure images. Random-grid crypto-system is a type of visual cryptosystem that generates an encrypted grid of the secret image utilizing a pre-encoded grid a... 详细信息
来源: 评论
A survey of autoencoder-based recommender systems
收藏 引用
Frontiers of Computer Science 2020年 第2期14卷 430-450页
作者: Guijuan ZHANG Yang LIU Xiaoning JIN Beijing Advanced Innovation Center for Future Internet Technology Beijing University of TechnologyBeijing 100124China
In the past decade,recommender systems have been widely used to provide users with personalized products and ***,most traditional recommender systems are still facing a challenge in dealing with the huge volume,comple... 详细信息
来源: 评论
An evolutionary autoencoder for dynamic community detection
收藏 引用
Science China(Information Sciences) 2020年 第11期63卷 219-234页
作者: Zhen WANG Chunyu WANG Chao GAO Xuelong LI Xianghua LI School of Mechanical Engineering and The Center for OPTIMAL Northwestern Polytechnical University College of Computer and Information Science Southwest University School of Computer Science and The Center for OPTIMAL Northwestern Polytechnical University
Dynamic community detection is significant for controlling and capturing the temporal features of networks. The evolutionary clustering framework provides a temporal smoothness constraint for simultaneously maximizing... 详细信息
来源: 评论
Health indicator construction for degradation assessment by embedded LSTM-CNN autoencoder and growing self-organized map
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2022年 252卷
作者: Chen, Zhipeng Zhu, Haiping Wu, Jun Fan, Liangzhi Huazhong Univ Sci & Technol Sch Mech Sci & Engn Wuhan Peoples R China Huazhong Univ Sci & Technol Sch Naval Architecture & Ocean Engn Wuhan Peoples R China Wuhan Text Univ Sch Mech Engn & Automat Wuhan Peoples R China
Health indicator (HI) construction is the most significant task of degradation assessment (DA) that facilitates prognostic and health management of rotating machinery. Many stacked autoencoder (SAE) models represented... 详细信息
来源: 评论
Improved Denoising autoencoder for Maritime Image Denoising and Semantic Segmentation of USV
收藏 引用
China Communications 2020年 第3期17卷 46-57页
作者: Yuhang Qiu Yongcheng Yang Zhijian Lin Pingping Chen Yang Luo Wenqi Huang Electronic Information Engineering Fuzhou UniversityFuzhou 350116China Nautical College Jimei UniversityXiamen 350116China
Unmanned surface vehicle(USV)is currently a hot research topic in maritime communication network(MCN),where denoising and semantic segmentation of maritime images taken by USV have been rarely *** former has recently ... 详细信息
来源: 评论
Using an autoencoder in the design of an anomaly detector for smart manufacturing
收藏 引用
PATTERN RECOGNITION LETTERS 2020年 136卷 272-278页
作者: Alfeo, Antonio L. Cimino, Mario G. C. A. Manco, Giuseppe Ritacco, Ettore Vaglini, Gigliola Univ Pisa Largo Lucio Lazzarino 1 I-56122 Pisa Italy CNR ICAR Via Pietro Bucci 8-9C I-87036 Arcavacata Di Rende Italy
According to the smart manufacturing paradigm, the analysis of assets' time series with a machine learning approach can effectively prevent unplanned production downtimes by detecting assets' anomalous operati... 详细信息
来源: 评论
Synthetic Aperture Radar Image Compression Based on a Variational autoencoder
收藏 引用
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 2022年 19卷
作者: Xu, Qihan Xiang, Yunfan Di, Zhixiong Fan, Yibo Feng, Quanyuan Wu, Qiang Shi, Jiangyi Southwest Jiaotong Univ Sch Informat Sci & Technol Chengdu 610031 Peoples R China Fudan Univ State Key Lab ASIC & Syst Shanghai 201203 Peoples R China Xidian Univ Sch Microelect Xian 710071 Peoples R China
Given the uniqueness of synthetic aperture radar (SAR) images, traditional optical image compression algorithms cannot fully exploit their redundant information. To improve SAR image compression in terms of rate-disto... 详细信息
来源: 评论