咨询与建议

限定检索结果

文献类型

  • 2,573 篇 期刊文献
  • 1,652 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,923 篇 工学
    • 2,443 篇 计算机科学与技术...
    • 1,582 篇 电气工程
    • 689 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 378 篇 软件工程
    • 265 篇 仪器科学与技术
    • 168 篇 生物医学工程(可授...
    • 163 篇 机械工程
    • 152 篇 测绘科学与技术
    • 141 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 73 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 69 篇 交通运输工程
    • 64 篇 土木工程
    • 59 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 44 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 865 篇 理学
    • 291 篇 物理学
    • 246 篇 生物学
    • 151 篇 化学
    • 137 篇 地球物理学
    • 126 篇 数学
  • 546 篇 医学
    • 345 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 86 篇 特种医学
  • 366 篇 管理学
    • 310 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,279 篇 autoencoder
  • 1,042 篇 deep learning
  • 432 篇 anomaly detectio...
  • 366 篇 machine learning
  • 239 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 153 篇 neural network
  • 153 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,103 篇 英文
  • 113 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 5 篇 法文
  • 4 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4279 条 记 录,以下是1091-1100 订阅
排序:
Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2022年 第2期23卷 bbac018-bbac018页
作者: Gan, Yanglan Huang, Xingyu Zou, Guobing Zhou, Shuigeng Guan, Jihong Donghua Univ Sch Comp Sci & Technol Shanghai Peoples R China Washington Univ Dept Comp Sci & Engn St Louis MO 63110 USA Shanghai Univ Dept Comp Sci & Technol Shanghai Peoples R China Fudan Univ Sch Comp Sci Shanghai Peoples R China Tongji Univ Dept Comp Sci & Technol Shanghai 200092 Peoples R China
Single-cell RNA sequencing (scRNA-seq) permits researchers to study the complex mechanisms of cell heterogeneity and diversity. Unsupervised clustering is of central importance for the analysis of the scRNA-seq data, ... 详细信息
来源: 评论
autoencoder based Communication System using Multi-Dimensional Constellations  35
Autoencoder based Communication System using Multi-Dimension...
收藏 引用
35th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC)
作者: Lee, Hyungje Eom, Chahyeon Lee, Hyojin Lee, Chungyong Yonsei Univ Sch Elect & Elect Engn 50 Yonsei Ro Seoul South Korea Samsung Res Samsung Elect 56 Sungchon Gil Seoul South Korea
This paper proposes an autoencoder based multiple-input multiple-output (MIMO) communication system. The proposed autoencoder learns and optimizes for only line of sight (LOS) component of Rician channel. In addition,... 详细信息
来源: 评论
autoencoder-based outlier detection for sparse, high dimensional data  8
Autoencoder-based outlier detection for sparse, high dimensi...
收藏 引用
8th IEEE International Conference on Big Data (Big Data)
作者: Chen, Wanghu Li, Huijun Li, Jing Arshad, Ali Northwest Normal Univ Inst Comp Sci & Engn Lanzhou 730070 Peoples R China
Outlier detection is essential in many data mining tasks. For high-dimensional data, its outlier detection often faces two challenges caused by sparse spatial distribution of data and big difficulties to get enough cl... 详细信息
来源: 评论
A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data
收藏 引用
OCEAN ENGINEERING 2020年 209卷 107478-107478页
作者: Murray, Brian Perera, Lokukaluge Prasad UiT Arctic Univ Norway Tromso Norway
Advances in artificial intelligence are driving the development of intelligent transportation systems, with the purpose of enhancing the safety and efficiency of such systems. One of the most important aspects of mari... 详细信息
来源: 评论
5G Uplink Frequency Offset Compensation with an autoencoder
5G Uplink Frequency Offset Compensation with an Autoencoder
收藏 引用
作者: Pitkänen, Mikko Aalto University
学位级别:硕士
The emerging fifth generation 5G cellular networks face strict requirements for the quality of service. Accurate and fast algorithms need to be deployed to deliver the promised high data rates and low latencies. One o... 详细信息
来源: 评论
Selective Unsupervised Learning-Based Wi-Fi Fingerprint System Using autoencoder and GAN
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2020年 第3期7卷 1898-1909页
作者: Seong, J. H. Seo, D. H. Korea Maritime & Ocean Univ Adv IT & Ship Convergence Ctr Busan 49112 South Korea Korea Maritime & Ocean Univ Div Elect & Elect Informat Engn Busan 49112 South Korea
In this article, we propose an automatic Wi-Fi fingerprint system that combines an unsupervised dual radio mapping (UDRM) algorithm with the aim of reducing the time-cost needed to acquire Wi-Fi signals. Our proposed ... 详细信息
来源: 评论
Modified autoencoder Training and Scoring for Robust Unsupervised Anomaly Detection in Deep Learning
收藏 引用
IEEE ACCESS 2020年 8卷 101824-101833页
作者: Merrill, Nicholas Eskandarian, Azim Virginia Tech Dept Mech Engn Blacksburg VA 24060 USA
The autoencoder (AE) is a fundamental deep learning approach to anomaly detection. AEs are trained on the assumption that abnormal inputs will produce higher reconstruction errors than normal ones. In practice, howeve... 详细信息
来源: 评论
Supervised feature learning by adversarial autoencoder approach for object classification in dual X-ray image of luggage
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2020年 第5期31卷 1101-1112页
作者: Chouai, Mohamed Merah, Mostefa Sancho-Gomez, Jose-Luis Mimi, Malika Mostaganem Univ Dept Elect Engn Signals & Syst Lab Site 1Route Belahcel Mostaganem 27000 Algeria Univ Politecn Cartagena Informat & Commun Technol Dept TDAM Res Grp Data Proc & Machine Learning Plaza Hosp 1 Murcia 30202 Spain
X-ray inspection by control officers is not always consistent when inspecting baggage since this task are monotonous, tedious and tiring for human inspectors. Thus, a semi-automatic inspection makes sense as a solutio... 详细信息
来源: 评论
Deep Manifold Preserving autoencoder for Classifying Breast Cancer Histopathological Images
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020年 第1期17卷 91-101页
作者: Feng, Yangqin Zhang, Lei Mo, Juan Sichuan Univ Machine Intelligence Lab Coll Comp Sci Chengdu 610065 Sichuan Peoples R China
Classifying breast cancer histopathological images automatically is an important task in computer assisted pathology analysis. However, extracting informative and non-redundant features for histopathological image cla... 详细信息
来源: 评论
A Fast Deep autoencoder for high-dimensional and sparse matrices in recommender systems
收藏 引用
NEUROCOMPUTING 2020年 412卷 381-391页
作者: Jiang, Jiajia Li, Weiling Dong, Ani Gou, Quanhui Luo, Xin Dongguan Univ Technol Sch Comp Sci & Technol Dongguan 523808 Guangdong Peoples R China Dongguan Univ Technol Dept Comp & Informat Sci City Coll Dongguan 523419 Guangdong Peoples R China Lenovo US Morrisville NC 27560 USA CloudWalk Dept Big Data Anal Tech Hengrui Chongqing Artificial Intelligence Res Ctr Chongqing 401331 Peoples R China
A latent factor analysis (LFA)-based model has outstanding performance in extracting desired patterns from High-dimensional and Sparse (HiDS) data for building a recommender systems. However, they mostly fail in acqui... 详细信息
来源: 评论