咨询与建议

限定检索结果

文献类型

  • 2,573 篇 期刊文献
  • 1,652 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,923 篇 工学
    • 2,443 篇 计算机科学与技术...
    • 1,582 篇 电气工程
    • 689 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 378 篇 软件工程
    • 265 篇 仪器科学与技术
    • 168 篇 生物医学工程(可授...
    • 163 篇 机械工程
    • 152 篇 测绘科学与技术
    • 141 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 73 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 69 篇 交通运输工程
    • 64 篇 土木工程
    • 59 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 44 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 865 篇 理学
    • 291 篇 物理学
    • 246 篇 生物学
    • 151 篇 化学
    • 137 篇 地球物理学
    • 126 篇 数学
  • 546 篇 医学
    • 345 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 86 篇 特种医学
  • 366 篇 管理学
    • 310 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,279 篇 autoencoder
  • 1,042 篇 deep learning
  • 432 篇 anomaly detectio...
  • 366 篇 machine learning
  • 239 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 153 篇 neural network
  • 153 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,103 篇 英文
  • 113 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 5 篇 法文
  • 4 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4279 条 记 录,以下是1141-1150 订阅
排序:
CAE-CNN: Predicting transcription factor binding site with convolutional autoencoder and convolutional neural network
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 183卷 115404-115404页
作者: Zhang, Yongqing Qiao, Shaojie Zeng, Yuanqi Gao, Dongrui Han, Nan Zhou, Jiliu Chengdu Univ Informat Technol Sch Comp Sci Chengdu 610225 Peoples R China Univ Elect Sci & Technol China Sch Comp Sci & Engn Chengdu 611731 Peoples R China Chengdu Univ Informat Technol Sch Software Engn Chengdu 610225 Peoples R China Chengdu Univ Informat Technol Sch Management Chengdu 610103 Peoples R China
Transcription factor binding site (TFBS) is a DNA sequence that binds to transcription factor and regulates the transcription process of the gene. Although deep learning algorithms are superior to traditional methods ... 详细信息
来源: 评论
An autoencoder-Based Deep Learning Approach for Load Identification in Structural Dynamics
收藏 引用
SENSORS 2021年 第12期21卷 4207页
作者: Rosafalco, Luca Manzoni, Andrea Mariani, Stefano Corigliano, Alberto Politecn Milan Dipartimento Ingn Civile & Ambientale Piazza L da Vinci 32 I-20133 Milan Italy Politecn Milan Dipartimento Matemat MOX Piazza L da Vinci 32 I-20133 Milan Italy
In civil engineering, different machine learning algorithms have been adopted to process the huge amount of data continuously acquired through sensor networks and solve inverse problems. Challenging issues linked to s... 详细信息
来源: 评论
Deep convolutional autoencoder for the simultaneous removal of baseline noise and baseline drift in chromatograms
收藏 引用
JOURNAL OF CHROMATOGRAPHY A 2021年 1646卷 462093-462093页
作者: Kensert, Alexander Collaerts, Gilles Efthymiadis, Kyriakos Van Broeck, Peter Desmet, Gert Cabooter, Deirdre Katholieke Univ Leuven Univ Leuven Dept Pharmaceut & Pharmacol Sci Pharmaceut Anal Herestr 49 B-3000 Leuven Belgium Vrije Univ Brussel Dept Comp Sci Artificial Intelligence Lab Pleinlaan 9 B-1050 Brussels Belgium Janssen Pharmaceut Dept Pharmaceut Dev & Mfg Sci Turnhoutseweg 30 Beerse Belgium Vrije Univ Brussel Dept Chem Engn Pleinlaan 2 B-1050 Brussels Belgium
Enhancement of chromatograms, such as the reduction of baseline noise and baseline drift, is often essential to accurately detect and quantify analytes in a mixture. Current methods have been well studied and adopted ... 详细信息
来源: 评论
Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model
收藏 引用
BMC BIOINFORMATICS 2021年 第1期22卷 33-33页
作者: Emdadi, Akram Eslahchi, Changiz Shahid Beheshti Univ Dept Comp & Data Sci Fac Math Sci Tehran Iran Inst Res Fundamental Sci IPM Sch Biol Sci Tehran 193955746 Iran
Background: Predicting the response of cancer cell lines to specific drugs is an essential problem in personalized medicine. Since drug response is closely associated with genomic information in cancer cells, some lar... 详细信息
来源: 评论
A steerable pyramid autoencoder based framework for anomaly frame detection of water pipeline CCTV inspection
收藏 引用
MEASUREMENT 2021年 174卷 109020-109020页
作者: Jiao, Yutong Rayhana, Rakiba Bin, Junchi Liu, Zheng Wu, Angie Kong, Xiangjie Univ British Columbia Sch Engn Kelowna BC Canada Pure Technol Mississauga ON Canada
Closed-circuit television (CCTV) is being widely adopted in water pipeline inspection. The inspector needs to spend a long time to watch the recorded video during the office-based survey and can get fatigue easily. An... 详细信息
来源: 评论
Temporal convolutional autoencoder for unsupervised anomaly detection in time series
收藏 引用
APPLIED SOFT COMPUTING 2021年 112卷 107751-107751页
作者: Thill, Markus Konen, Wolfgang Wang, Hao Back, Thomas TH Koln Univ Appl Sci D-51643 Gummersbach Germany Leiden Univ LIACS NL-2333 CA Leiden Netherlands
Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system's normal behavi... 详细信息
来源: 评论
Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 186卷 115842-115842页
作者: Kim, Jin-Young Cho, Sung-Bae Yonsei Univ Dept Comp Sci Seoul 03722 South Korea
Recently, many studies have exploited the potential of deep learning to forecast energy demand, but they cannot explain the results. They only analyze the simple correlations between the input and output to discover t... 详细信息
来源: 评论
Performance Evaluation of a Combined Convolutional autoencoder and Image Recognition Model for Large Scale Images  11th
Performance Evaluation of a Combined Convolutional AutoEncod...
收藏 引用
11th International Symposium on Computational Intelligence and Industrial Applications, ISCIIA 2024
作者: Myojin, Takuho Hoshino, Yukinobu Tosayamada Kami City 185 Miyanokuchi Kochi782-8502 Japan
There is a need to introduce remote disaster monitoring camera systems that utilize AI technology. This is especially the point where disasters have become larger and more frequent in recent years. The challenge to re... 详细信息
来源: 评论
Imputation of single-cell gene expression with an autoencoder neural network
收藏 引用
Quantitative Biology 2020年 第1期8卷 78-94页
作者: Md.Bahadur Badsha Rui Li Boxiang Liu Yang ILi Min Xian Nicholas EBanovich Audrey Qiuyan Fu Department of Statistical Science Institute for Bioinformatics and Evolutionary StudiesInstitute for Modeling Collaboration&InnovationUniversity of IdahoMoscowID 83844USA Department of Biology Stanford UniversityStanfordCA 94305USA Section of Genetic Medicine University of ChicagoChicagoIL 60637USA Department of Computer Science University of IdahoIdaho FallsID 83401USA The Translational Genomics Research Institute PhoenixAZ 85004USA
Background:Single-cell RNA-sequencing(scRNA-seq)is a rapidly evolving technology that enables measurement of gene expression levels at an unprecedented *** the explosive growth in the number of cells that can be assay... 详细信息
来源: 评论
Bearing Fault Classification Using Wavelet Energy and autoencoder  16th
Bearing Fault Classification Using Wavelet Energy and Autoen...
收藏 引用
16th International Conference on Distributed Computing and Internet Technology (ICDCIT)
作者: Udmale, Sandeep S. Singh, Sanjay Kumar Veermata Jijabai Technol Inst VJTI Dept Comp Engn & IT Mumbai 400019 Maharashtra India Indian Inst Technol BHU Dept Comp Sci & Engn Varanasi 221005 Uttar Pradesh India
Today's modern industry has widely accepted the intelligent condition monitoring system to improve the industrial organization. As an effect, the data-driven-based fault diagnosis methods are designed by integrati... 详细信息
来源: 评论