咨询与建议

限定检索结果

文献类型

  • 2,596 篇 期刊文献
  • 1,662 篇 会议
  • 37 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,953 篇 工学
    • 2,467 篇 计算机科学与技术...
    • 1,595 篇 电气工程
    • 698 篇 信息与通信工程
    • 426 篇 控制科学与工程
    • 385 篇 软件工程
    • 272 篇 仪器科学与技术
    • 166 篇 机械工程
    • 165 篇 生物医学工程(可授...
    • 153 篇 测绘科学与技术
    • 150 篇 电子科学与技术(可...
    • 99 篇 石油与天然气工程
    • 81 篇 环境科学与工程(可...
    • 78 篇 交通运输工程
    • 74 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 63 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 41 篇 生物工程
    • 40 篇 安全科学与工程
  • 874 篇 理学
    • 287 篇 物理学
    • 247 篇 生物学
    • 156 篇 化学
    • 139 篇 地球物理学
    • 132 篇 数学
  • 552 篇 医学
    • 342 篇 临床医学
    • 126 篇 基础医学(可授医学...
    • 84 篇 特种医学
  • 382 篇 管理学
    • 326 篇 管理科学与工程(可...
  • 75 篇 农学
  • 22 篇 经济学
  • 22 篇 法学
  • 16 篇 文学
  • 14 篇 艺术学
  • 12 篇 教育学
  • 3 篇 哲学
  • 2 篇 军事学

主题

  • 4,298 篇 autoencoder
  • 1,046 篇 deep learning
  • 431 篇 anomaly detectio...
  • 369 篇 machine learning
  • 241 篇 feature extracti...
  • 155 篇 convolutional ne...
  • 152 篇 neural network
  • 151 篇 unsupervised lea...
  • 130 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 105 篇 dimensionality r...
  • 82 篇 cnn
  • 80 篇 clustering
  • 79 篇 representation l...
  • 79 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 17 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 8 篇 zhang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 zhang kai
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 zhang hao
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai

语言

  • 4,086 篇 英文
  • 163 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 4 篇 法文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4298 条 记 录,以下是1161-1170 订阅
Auto-HMM-LMF: feature selection based method for prediction of drug response via autoencoder and hidden Markov model
收藏 引用
BMC BIOINFORMATICS 2021年 第1期22卷 33-33页
作者: Emdadi, Akram Eslahchi, Changiz Shahid Beheshti Univ Dept Comp & Data Sci Fac Math Sci Tehran Iran Inst Res Fundamental Sci IPM Sch Biol Sci Tehran 193955746 Iran
Background: Predicting the response of cancer cell lines to specific drugs is an essential problem in personalized medicine. Since drug response is closely associated with genomic information in cancer cells, some lar... 详细信息
来源: 评论
A steerable pyramid autoencoder based framework for anomaly frame detection of water pipeline CCTV inspection
收藏 引用
MEASUREMENT 2021年 174卷 109020-109020页
作者: Jiao, Yutong Rayhana, Rakiba Bin, Junchi Liu, Zheng Wu, Angie Kong, Xiangjie Univ British Columbia Sch Engn Kelowna BC Canada Pure Technol Mississauga ON Canada
Closed-circuit television (CCTV) is being widely adopted in water pipeline inspection. The inspector needs to spend a long time to watch the recorded video during the office-based survey and can get fatigue easily. An... 详细信息
来源: 评论
Bearing Fault Classification Using Wavelet Energy and autoencoder  16th
Bearing Fault Classification Using Wavelet Energy and Autoen...
收藏 引用
16th International Conference on Distributed Computing and Internet Technology (ICDCIT)
作者: Udmale, Sandeep S. Singh, Sanjay Kumar Veermata Jijabai Technol Inst VJTI Dept Comp Engn & IT Mumbai 400019 Maharashtra India Indian Inst Technol BHU Dept Comp Sci & Engn Varanasi 221005 Uttar Pradesh India
Today's modern industry has widely accepted the intelligent condition monitoring system to improve the industrial organization. As an effect, the data-driven-based fault diagnosis methods are designed by integrati... 详细信息
来源: 评论
A Network Intrusion Detection Method Based on Stacked autoencoder and LSTM
A Network Intrusion Detection Method Based on Stacked Autoen...
收藏 引用
IEEE International Conference on Communications (IEEE ICC) / Workshop on NOMA for 5G and Beyond
作者: Yan, Yu Qi, Lin Wang, Jie Lin, Yun Chen, Lei Harbin Engn Univ Coll Informat & Commun Engn Harbin Peoples R China Georgia Southern Univ Dept Infonnat Technol Coll Engn & Comp Statesboro GA 30458 USA
Nowadays, network intrusions have brought greater impact in a large scale. Intrusion Detection Systems (IDS) have been a recent research hotspot for both the industry and the academic. However, due to the dynamic char... 详细信息
来源: 评论
Temporal convolutional autoencoder for unsupervised anomaly detection in time series
收藏 引用
APPLIED SOFT COMPUTING 2021年 112卷 107751-107751页
作者: Thill, Markus Konen, Wolfgang Wang, Hao Back, Thomas TH Koln Univ Appl Sci D-51643 Gummersbach Germany Leiden Univ LIACS NL-2333 CA Leiden Netherlands
Learning temporal patterns in time series remains a challenging task up until today. Particularly for anomaly detection in time series, it is essential to learn the underlying structure of a system's normal behavi... 详细信息
来源: 评论
Analysis of different RNN autoencoder variants for time series classification and machine prognostics
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2021年 149卷 107322-107322页
作者: Yu, Wennian Kim, Il Yong Mechefske, Chris Chongqing Univ Coll Mech Engn Chongqing 400044 Peoples R China Queens Univ Dept Mech & Mat Engn Kingston ON K7L 3N6 Canada
Recurrent neural network (RNN) based autoencoders, trained in an unsupervised manner, have been widely used to generate fixed-dimensional vector representations or embeddings for varying length multivariate time serie... 详细信息
来源: 评论
Explainable prediction of electric energy demand using a deep autoencoder with interpretable latent space
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2021年 186卷 115842-115842页
作者: Kim, Jin-Young Cho, Sung-Bae Yonsei Univ Dept Comp Sci Seoul 03722 South Korea
Recently, many studies have exploited the potential of deep learning to forecast energy demand, but they cannot explain the results. They only analyze the simple correlations between the input and output to discover t... 详细信息
来源: 评论
Imputation of single-cell gene expression with an autoencoder neural network
收藏 引用
Quantitative Biology 2020年 第1期8卷 78-94页
作者: Md.Bahadur Badsha Rui Li Boxiang Liu Yang ILi Min Xian Nicholas EBanovich Audrey Qiuyan Fu Department of Statistical Science Institute for Bioinformatics and Evolutionary StudiesInstitute for Modeling Collaboration&InnovationUniversity of IdahoMoscowID 83844USA Department of Biology Stanford UniversityStanfordCA 94305USA Section of Genetic Medicine University of ChicagoChicagoIL 60637USA Department of Computer Science University of IdahoIdaho FallsID 83401USA The Translational Genomics Research Institute PhoenixAZ 85004USA
Background:Single-cell RNA-sequencing(scRNA-seq)is a rapidly evolving technology that enables measurement of gene expression levels at an unprecedented *** the explosive growth in the number of cells that can be assay... 详细信息
来源: 评论
A Novel Inverse Procedure Via Creating TubeNet with Constraint autoencoder for Feature-Space Dimension-Reduction
收藏 引用
INTERNATIONAL JOURNAL OF APPLIED MECHANICS 2021年 第8期13卷
作者: Duan, Shuyong Hou, Zhiping Han, Xu Liu, Guirong Hebei Univ Technol State Key Lab Reliabil & Intelligence Elect Equip Tianjin 300401 Peoples R China Univ Cincinnati Dept Aerosp Engn & Engn Mech Cincinnati OH 45221 USA
TubeNet has the simplest possible tubular configuration with the uniform number of neurons in all layers and enables explicit inversion. To create a TubeNet, dimension-reduction is a prerequisite for the inverse probl... 详细信息
来源: 评论
Intrusion detection in cyber-physical systems using a generic and domain specific deep autoencoder model
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2021年 91卷 107044-107044页
作者: Thakur, Soumyadeep Chakraborty, Anuran De, Rajonya Kumar, Neeraj Sarkar, Ram Indian Inst Technol Dept Comp Sci & Engn Mumbai 400076 Maharashtra India Jadavpur Univ Dept Comp Sci & Engn 188 Raja SC Mallick Rd Kolkata 700032 India Thapar Inst Engn & Technol Deemed Univ Dept Comp Sci & Engn Patiala Punjab India Univ Petr & Energy Studies Sch Comp Sci Dehra Dun Uttarakhand India Asia Univ Dept Comp Sci & Informat Engn Taichung Taiwan
The rapid growth of network-related services in the last decade has produced a huge amount of sensitive data on the internet. But networks are very much prone to intrusions where unauthorized users attempt to access s... 详细信息
来源: 评论