咨询与建议

限定检索结果

文献类型

  • 2,596 篇 期刊文献
  • 1,662 篇 会议
  • 37 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,953 篇 工学
    • 2,467 篇 计算机科学与技术...
    • 1,595 篇 电气工程
    • 698 篇 信息与通信工程
    • 426 篇 控制科学与工程
    • 385 篇 软件工程
    • 272 篇 仪器科学与技术
    • 166 篇 机械工程
    • 165 篇 生物医学工程(可授...
    • 153 篇 测绘科学与技术
    • 150 篇 电子科学与技术(可...
    • 99 篇 石油与天然气工程
    • 81 篇 环境科学与工程(可...
    • 78 篇 交通运输工程
    • 74 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 63 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 41 篇 生物工程
    • 40 篇 安全科学与工程
  • 874 篇 理学
    • 287 篇 物理学
    • 247 篇 生物学
    • 156 篇 化学
    • 139 篇 地球物理学
    • 132 篇 数学
  • 552 篇 医学
    • 342 篇 临床医学
    • 126 篇 基础医学(可授医学...
    • 84 篇 特种医学
  • 382 篇 管理学
    • 326 篇 管理科学与工程(可...
  • 75 篇 农学
  • 22 篇 经济学
  • 22 篇 法学
  • 16 篇 文学
  • 14 篇 艺术学
  • 12 篇 教育学
  • 3 篇 哲学
  • 2 篇 军事学

主题

  • 4,298 篇 autoencoder
  • 1,046 篇 deep learning
  • 431 篇 anomaly detectio...
  • 369 篇 machine learning
  • 241 篇 feature extracti...
  • 155 篇 convolutional ne...
  • 152 篇 neural network
  • 151 篇 unsupervised lea...
  • 130 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 105 篇 dimensionality r...
  • 82 篇 cnn
  • 80 篇 clustering
  • 79 篇 representation l...
  • 79 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 17 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 8 篇 zhang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 zhang kai
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 zhang hao
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai

语言

  • 4,086 篇 英文
  • 163 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 4 篇 法文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4298 条 记 录,以下是1221-1230 订阅
Adversarial autoencoder and Multi-Task Semi-Supervised Learning for Multi-stage Process  24th
Adversarial Autoencoder and Multi-Task Semi-Supervised Learn...
收藏 引用
24th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD)
作者: Mendes, Andre Togelius, Julian Coelho, Leandro dos Santos NYU New York NY 10003 USA Pontificia Univ Catolica Parana Curitiba Parana Brazil Univ Fed Parana Curitiba Parana Brazil
In selection processes, decisions follow a sequence of stages. Early stages have more applicants and general information, while later stages have fewer applicants but specific data. This is represented by a dual funne... 详细信息
来源: 评论
Mutual information-based recommender system using autoencoder
收藏 引用
APPLIED SOFT COMPUTING 2021年 109卷 107547-107547页
作者: Noshad, Zahra Bouyer, Asgarali Noshad, Mohammad Azarbaijan Shahid Madani Univ Tabriz Iran Harvard Univ Cambridge MA 02138 USA
Nowadays, most of the websites like Amazon, YouTube and Netflix use collaborative filtering methods to recommend various types of items to users. There are two principal categories of collaborative filtering;memory-ba... 详细信息
来源: 评论
autoencoder-based part clustering for part-in-whole retrieval of CAD models
收藏 引用
COMPUTERS & GRAPHICS-UK 2019年 第0期81卷 41-51页
作者: Muraleedharan, Lakshmi Priya Kannan, Shyam Sundar Muthuganapathy, Ramanathan Indian Inst Technol Madras Dept Engn Design Adv Geometr Comp Lab Chennai 600036 Tamil Nadu India
Part-in-whole retrieval (PWR) is an important problem in the field of computer-aided design (CAD) with applications in design reuse, feature recognition and suppression and so on. Initially, we present a non parametri... 详细信息
来源: 评论
Maneuvering Target Tracking using the autoencoder-Interacting Multiple Model Filter  54
Maneuvering Target Tracking using the Autoencoder-Interactin...
收藏 引用
54th Asilomar Conference on Signals, Systems and Computers
作者: Vedula, Kirty Weiss, Matthew L. Paffenroth, Randy C. Uzarski, Joshua R. Brown, D. Richard, III Worcester Polytech Inst 100 Inst Rd Worcester MA 01609 USA US Army CCDC SC Soldier Protect & Survivabil Directorate Natick MA 01760 USA
This paper considers the problem of tracking and predicting the state of a dynamic system with stochastic dynamics and multiple modes of operation. A well-known approach to this problem is the "interacting multip... 详细信息
来源: 评论
Low Cost and Low Power Stacked Sparse autoencoder Hardware Acceleration for Deep Learning Edge Computing Applications  5
Low Cost and Low Power Stacked Sparse Autoencoder Hardware A...
收藏 引用
5th International Conference on Advanced Technologies for Signal and Image Processing (ATSIP)
作者: Belabed, Tarek Coutinho, Maria Gracielly F. Fernandes, Marcelo A. C. Carlos, Valderrama Souani, Chokri iUniv Mons Fac Polytech SEMi 31 Bd Dolez B-7000 Mons Belgium Univ Sousse Ecole Natl Ingn Sousse Sousse 4000 Tunisia Univ Monastir Fac Sci Monastir Lab Microelect & Instrumentat Monastir 5019 Tunisia Univ Sousse Inst Super Sci Appl & Technol Sousse Sousse 4003 Tunisia Univ Fed Rio Grande do Norte Dept Comp & Automat Engn BR-59078970 Natal RN Brazil
Nowadays, Deep Learning DL becoming more and more interesting in many areas, such as genomics, security, data analysis, image, and video processing. However, DL requires more and more powerful and parallel computing. ... 详细信息
来源: 评论
Denoising Adversarial autoencoder for Obfuscated Traffic Detection and Recovery  1
收藏 引用
2nd IFIP TC 6 International Workshop on Machine Learning for Networking (MLN)
作者: Salman, Ola Elhajj, Imad H. Kayssi, Ayman Chehab, Ali Amer Univ Beirut Dept Elect & Comp Engn Beirut 11072020 Lebanon
Traffic classification is key for managing both QoS and security in the Internet of Things (IoT). However, new traffic obfuscation techniques have been developed to thwart classification. Traffic mutation is one such ... 详细信息
来源: 评论
A Novel Multi-impairment Compensation Scheme Based on Deep autoencoder for CO-OFDM System  25
A Novel Multi-impairment Compensation Scheme Based on Deep A...
收藏 引用
25th Opto-Electronics and Communications Conference (OECC)
作者: Han, Ying Chen, Yuanxiang Huang, Yongtao Fu, Jia Lin, Shangjing Yu, Jianguo Beijing Univ Posts & Telecommun Sch Elect Engn Beijing 100876 Peoples R China
We propose a novel multi-impairment compensation scheme using deep autoencoder for CO-OFDM system. A Q-factor improvement of 10 dB is achieved for QPSK-OFDM signal with 80 km SSMF transmission. Different transmission ... 详细信息
来源: 评论
Facial Image Denoising Using Convolutional autoencoder Network
Facial Image Denoising Using Convolutional Autoencoder Netwo...
收藏 引用
International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM)
作者: Tun, Naing Min Gavrilov, Alexander, I Tun, Nyan Linn Bauman Moscow State Tech Univ Moscow Russia
Noise effects can interfere the face recognition process in outdoor conditions. Therefore, image denoising topic is the classical issue in the field of image processing and computer vision subjects. In this paper, we ... 详细信息
来源: 评论
Tuberculosis CT Image Analysis Using Image Features Extracted by 3D autoencoder  1
收藏 引用
11th International Conference of the CLEF Association (CLEF)
作者: Kazlouski, Siarhei United Inst Informat Problems Minsk BELARUS
This paper presents an approach for the automated analysis of 3D Computed Tomography (CT) images based on the utilization of descriptors extracted using 3D deep convolutional autoencoder (AEC [8]) networks. Both the c... 详细信息
来源: 评论
Improved Process Fault Diagnosis by Using Neural Networks with Andrews Plot and autoencoder  18
Improved Process Fault Diagnosis by Using Neural Networks wi...
收藏 引用
18th IEEE International Conference on Industrial Informatics (INDIN)
作者: Wang, Shengkai Zhang, Jie Newcastle Univ Sch Engn Merz Court Newcastle Upon Tyne NE1 7RU Tyne & Wear England
With industrial production processes becoming more and more sophisticated, traditional fault diagnosis systems may be insufficient to meet current industrial diagnostic performance requirements. In order to improve fa... 详细信息
来源: 评论