咨询与建议

限定检索结果

文献类型

  • 2,596 篇 期刊文献
  • 1,662 篇 会议
  • 37 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,298 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,953 篇 工学
    • 2,467 篇 计算机科学与技术...
    • 1,595 篇 电气工程
    • 698 篇 信息与通信工程
    • 426 篇 控制科学与工程
    • 385 篇 软件工程
    • 272 篇 仪器科学与技术
    • 166 篇 机械工程
    • 165 篇 生物医学工程(可授...
    • 153 篇 测绘科学与技术
    • 150 篇 电子科学与技术(可...
    • 99 篇 石油与天然气工程
    • 81 篇 环境科学与工程(可...
    • 78 篇 交通运输工程
    • 74 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 63 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 41 篇 生物工程
    • 40 篇 安全科学与工程
  • 874 篇 理学
    • 287 篇 物理学
    • 247 篇 生物学
    • 156 篇 化学
    • 139 篇 地球物理学
    • 132 篇 数学
  • 552 篇 医学
    • 342 篇 临床医学
    • 126 篇 基础医学(可授医学...
    • 84 篇 特种医学
  • 382 篇 管理学
    • 326 篇 管理科学与工程(可...
  • 75 篇 农学
  • 22 篇 经济学
  • 22 篇 法学
  • 16 篇 文学
  • 14 篇 艺术学
  • 12 篇 教育学
  • 3 篇 哲学
  • 2 篇 军事学

主题

  • 4,298 篇 autoencoder
  • 1,046 篇 deep learning
  • 431 篇 anomaly detectio...
  • 369 篇 machine learning
  • 241 篇 feature extracti...
  • 155 篇 convolutional ne...
  • 152 篇 neural network
  • 151 篇 unsupervised lea...
  • 130 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 105 篇 dimensionality r...
  • 82 篇 cnn
  • 80 篇 clustering
  • 79 篇 representation l...
  • 79 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 17 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 8 篇 zhang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 zhang kai
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 zhang hao
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai

语言

  • 4,086 篇 英文
  • 163 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 4 篇 法文
  • 2 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4298 条 记 录,以下是1231-1240 订阅
排序:
Classifying payment patterns with artificial neural networks: An autoencoder approach
收藏 引用
LATIN AMERICAN JOURNAL OF CENTRAL BANKING 2020年 第1-4期1卷
作者: Rubio, Jeniffer Barucca, Paolo Gage, Gerardo Arroyo, John Morales-Resendiz, Raul Banco Cent Ecuador BCE Quito Ecuador Univ Coll London UCL London England Ctr Estudios Monetarios Latinoamer CEMLA Mexico City Mexico
Payments and market infrastructures are the backbone of modern financial systems and play a key role in the economy. One of their main goals is to manage systemic risk, especially in the case of systemically important... 详细信息
来源: 评论
A NEW autoencoder TRAINING PARADIGM FOR UNSUPERVISED HYPERSPECTRAL ANOMALY DETECTION
A NEW AUTOENCODER TRAINING PARADIGM FOR UNSUPERVISED HYPERSP...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Merrill, Nicholas Olson, Colin C. Virginia Tech Dept Mech Engn Blacksburg VA 24061 USA US Naval Res Lab Opt Sci Div Washington DC USA
We introduce new methods for training an autoencoder (AE) as an unsupervised hyperspectral anomaly detector. We detail a new percentile loss (PL) that reliably constructs an accurate background model while limiting th... 详细信息
来源: 评论
Fast Few-Shot Transfer Learning for Disease Identification from Chest X-Ray Images Using autoencoder Ensemble
Fast Few-Shot Transfer Learning for Disease Identification f...
收藏 引用
Conference on Medical Imaging - Computer-Aided Diagnosis
作者: Paul, Angshuman Tang, Yu-Xing Summers, Ronald M. NIH Imaging Biomarkers & Comp Aided Diag Lab Radiol & Imaging Sci Ctr Clin Bldg 10 Bethesda MD 20892 USA
We propose a fast few-shot learning framework that uses transfer learning to identify different lung and chest diseases and conditions from chest x-rays. Our model can be trained with as few as five training examples,... 详细信息
来源: 评论
PM-AE: Pyramid Memory autoencoder for Unsupervised Textured Surface Defect Detection  5
PM-AE: Pyramid Memory Autoencoder for Unsupervised Textured ...
收藏 引用
5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE)
作者: Yao, Haiming Li, Dan Zhu, Yiwen Yu, Wenyong Huazhong Univ Sci & Technol Sch Mech Sci & Engn Wuhan Peoples R China
Anomaly detection for textured surface is a key task in product quality control. In recent years, supervised deep learning approaches have begun to be applied in this field, whereas most of the approaches are usually ... 详细信息
来源: 评论
Convolution autoencoder-Based Sparse Representation Wavelet for Image Classification  22
Convolution Autoencoder-Based Sparse Representation Wavelet ...
收藏 引用
22nd IEEE International Workshop on Multimedia Signal Processing (MMSP)
作者: Nguyen, Tan-Sy Ngo, Long H. Luong, Marie Kaaniche, Mounir Beghdadi, Azeddine Univ Sorbonne Paris Nord L2TI UR 3043 F-93430 Villetaneuse France
In this paper, we propose an effective Convolutional autoencoder (AE) model for Sparse Representation (SR) in the Wavelet Domain for Classification (SRWC). The proposed approach involves an autoencoder with a sparse l... 详细信息
来源: 评论
Cross-Domain Adversarial autoencoder for Fine Grained Category Preserving Image Translation
Cross-Domain Adversarial Autoencoder for Fine Grained Catego...
收藏 引用
International Joint Conference on Neural Networks (IJCNN) held as part of the IEEE World Congress on Computational Intelligence (IEEE WCCI)
作者: Hou, Haodi Hu, Jing Gao, Yang Nanjing Univ State Key Lab Novel Software Technol Nanjing Peoples R China
Cross-domain image translation attempt to translate images from one domain to another domain, with the content of images preserved. Current approaches treat image's content as the underlying spatial structure, and... 详细信息
来源: 评论
Identifying prognostic subgroups of luminal-A breast cancer using a deep autoencoder
Identifying prognostic subgroups of luminal-A breast cancer ...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM)
作者: Wang, Seunghyun Lee, Doheon Korea Adv Inst Sci & Technol Dept Bio & Brain Engn Daejeon South Korea
Luminal-A breast cancer is the most frequently occurring breast cancer subtype. However, it shows high variability in prognosis, and more precise stratification is required for personalized medicine. In this paper, we... 详细信息
来源: 评论
Long Short-Term Memory autoencoder Neural Networks Based DC Pulsed Load Monitoring Using Short-Time Fourier Transform Feature Extraction  29
Long Short-Term Memory Autoencoder Neural Networks Based DC ...
收藏 引用
IEEE 29th International Symposium on Industrial Electronics (ISIE)
作者: Ma, Yue Maqsood, Atif Corzine, Keith Oslebo, Damian UC Santa Cruz Dept Elect & Comp Engn Santa Cruz CA 95064 USA Naval Postgrad Sch Dept Elect & Comp Engn Monterey CA USA
Dc loads are increasingly used in electric ship power systems supplying a larger amount of power electronic loads. The need for load monitoring and fault detection in dc microgrids has grown but traditional ac methods... 详细信息
来源: 评论
MULTI-WAY MULTI-VIEW DEEP autoencoder FOR IMAGE FEATURE LEARNING WITH MULTI-LEVEL GRAPH REGULARIZATION
MULTI-WAY MULTI-VIEW DEEP AUTOENCODER FOR IMAGE FEATURE LEAR...
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Fang, Zheng Zhou, Sen Li, Xi Zhu, Haoqi Zhejiang Univ Coll Comp Sci & Technol Hangzhou Peoples R China NetEase Inc R&D Ctr Hangzhou Peoples R China
Multi-view feature learning has garnered much attention recently since many real world data are comprised of different representations or views. How to explore the consensus structure and eliminate the inconsistency n... 详细信息
来源: 评论
Smart Image Inspection using Defect-Removing autoencoder
收藏 引用
Procedia CIRP 2021年 104卷 559-564页
作者: Yusuke Hida Savvas Makariou Sachio Kobayashi Fujitsu Laboratories of Europe Ltd 4th Floor Building 3 Hyde Park Hayes 11 Millington Road Hayes Middlesex UB3 4AZ UK Fujitsu Laboratories Ltd 4-1-1 Kamikodanaka Nakahara-ku Kawasaki Kanagawa 211-8588 Japan
Visual inspection is a tedious but necessary job in industrial manufacturing to ensure high quality products. Anomaly detection for images is a topic of interest and research, though acquiring anomalous data is diffic... 详细信息
来源: 评论