咨询与建议

限定检索结果

文献类型

  • 2,553 篇 期刊文献
  • 1,644 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,895 篇 工学
    • 2,430 篇 计算机科学与技术...
    • 1,574 篇 电气工程
    • 678 篇 信息与通信工程
    • 413 篇 控制科学与工程
    • 376 篇 软件工程
    • 264 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 65 篇 材料科学与工程(可...
    • 62 篇 土木工程
    • 58 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 40 篇 生物工程
    • 34 篇 力学(可授工学、理...
  • 850 篇 理学
    • 283 篇 物理学
    • 243 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 123 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 18 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 11 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,251 篇 autoencoder
  • 1,035 篇 deep learning
  • 430 篇 anomaly detectio...
  • 364 篇 machine learning
  • 236 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 152 篇 neural network
  • 152 篇 unsupervised lea...
  • 129 篇 neural networks
  • 108 篇 lstm
  • 107 篇 training
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 77 篇 transfer learnin...
  • 77 篇 decoding
  • 77 篇 deep neural netw...
  • 67 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,089 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4251 条 记 录,以下是351-360 订阅
排序:
Toxic gas release modeling for real-time analysis using variational autoencoder with convolutional neural networks
收藏 引用
CHEMICAL ENGINEERING SCIENCE 2018年 181卷 68-78页
作者: Na, Jonggeol Jeon, Kyeongwoo Lee, Won Bo Seoul Natl Univ Sch Chem & Biol Engn Gwanak Ro 1 Seoul 08826 South Korea
High-accuracy gas dispersion models are necessary for predicting toxic gas movement, and for reducing the damage caused by toxic gas release accidents in chemical processes. In urban areas, where obstacles are large a... 详细信息
来源: 评论
Quality-relevant feature extraction method based on teacher-student uncertainty autoencoder and its application to soft sensors
收藏 引用
INFORMATION SCIENCES 2022年 592卷 320-339页
作者: Lu, Yusheng Jiang, Chao Yang, Dan Peng, Xin Zhong, Weimin East China Univ Sci & Technol Key Lab Adv Control & Optimizat Chem Proc Minist Educ Shanghai 200237 Peoples R China
Supervised representation learning based on the teacher-student framework can extract quality-related features for soft sensors, in which the teacher network extracts representation information for the student network... 详细信息
来源: 评论
Stock market network based on bi-dimensional histogram and autoencoder
收藏 引用
INTELLIGENT DATA ANALYSIS 2022年 第3期26卷 723-750页
作者: Choi, Sungyoon Gwak, Dongkyu Song, Jae Wook Chang, Woojin Seoul Natl Univ Dept Ind Engn Seoul 08826 South Korea Hanyang Univ Dept Ind Engn Seoul South Korea Seoul Natl Univ Inst Ind Syst Innovat Seoul South Korea Seoul Natl Univ SNU Inst Res Finance & Econ Seoul South Korea
In this study, we propose a deep learning related framework to analyze S&P500 stocks using bi-dimensional histogram and autoencoder. The bi-dimensional histogram consisting of daily returns of stock price and stoc... 详细信息
来源: 评论
Deep autoencoder Learning for Relay-Assisted Cooperative Communication Systems
收藏 引用
IEEE TRANSACTIONS ON COMMUNICATIONS 2020年 第9期68卷 5471-5488页
作者: Lu, Yuxin Cheng, Peng Chen, Zhuo Li, Yonghui Mow, Wai Ho Vucetic, Branka Hong Kong Univ Sci & Technol Dept Elect & Comp Engn Hong Kong Peoples R China La Trobe Univ Dept Comp Sci & Informat Technol Melbourne Vic 3086 Australia Univ Sydney Sch Elect & Informat Engn Sydney NSW 2006 Australia CSIRO DATA61 Marsfield NSW 2122 Australia Univ Sydney Sch Elect & Informat Sydney NSW 2006 Australia
Emerging recently as a novel concept in communication system design, end-to-end learning introduces deep neural networks (NNs) to represent the transmitter and receiver functions. Consequently, the whole system can be... 详细信息
来源: 评论
Multi-label learning with kernel extreme learning machine autoencoder
收藏 引用
KNOWLEDGE-BASED SYSTEMS 2019年 第0期178卷 1-10页
作者: Cheng, Yusheng Zhao, Dawei Wang, Yibin Pei, Gensheng Anqing Normal Univ Sch Comp & Informat Anhui Anqing 246011 Peoples R China Univ Key Lab Intelligent Percept & Comp Anhui Pro Anqing 246011 Peoples R China
In multi-label learning, in order to improve the accuracy of classification, many scholars have considered the relationship between features and features, features and labels or labels and labels, but how to combine t... 详细信息
来源: 评论
Flow field prediction in bed configurations: A parametric spatio-temporal convolutional autoencoder approach
收藏 引用
NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS 2024年
作者: Mjalled, Ali Namdar, Reza Reineking, Lucas Norouzi, Mohammad Varnik, Fathollah Moennigmann, Martin Ruhr Univ Bochum Automat Control & Syst Theory D-44801 Bochum Germany Ruhr Univ Bochum Interdisciplinary Ctr Adv Mat Simulat Bochum Germany
The use of deep learning methods for modeling fluid flow has drawn a lot of attention in the past few years. Here we present a data-driven reduced-order model (ROM) for predicting flow fields in a bed configuration of... 详细信息
来源: 评论
Discriminative Embedding autoencoder With a Regressor Feedback for Zero-Shot Learning
收藏 引用
IEEE ACCESS 2020年 8卷 11019-11030页
作者: Shi, Ying Wei, Wei Beihang Univ LMIB Beijing 100191 Peoples R China Beihang Univ Sch Math & Syst Sci Beijing 100191 Peoples R China
Zero-shot learning (ZSL) aims to recognize the novel object categories using the semantic representation of categories, and the key idea is to explore the knowledge of how the novel class is semantically related to th... 详细信息
来源: 评论
Imbalanced fault diagnosis of rotating machinery using autoencoder-based SuperGraph feature learning
收藏 引用
Frontiers of Mechanical Engineering 2021年 第4期16卷 829-839页
作者: Jie LIU Kaibo ZHOU Chaoying YANG Guoliang LU School of Civil and Hydraulic Engineering Huazhong University of Science and TechnologyWuhan 430074China School of Artificial Intelligence and Automation Huazhong University of Science and TechnologyWuhan 430074China School of Mechanical Engineering Shandong UniversityJinan 250061China
Existing fault diagnosis methods usually assume that there are balanced training data for every machine health ***,the collection of fault signals is very difficult and expensive,resulting in the problem of imbalanced... 详细信息
来源: 评论
History Matching of Naturally Fractured Reservoirs Using a Deep Sparse autoencoder
收藏 引用
SPE JOURNAL 2021年 第4期26卷 1700-1721页
作者: Zhang, Kai Zhang, Jinding Ma, Xiaopeng Yao, Chuanjin Zhang, Liming Yang, Yongfei Wang, Jian Yao, Jun Zhao, Hui China Univ Petr Qingdao Peoples R China Yangtze Univ Jingzhou Hebei Peoples R China
Although researchers have applied many methods to history matching, such as Monte Carlo methods, ensemble-based methods, and optimization algorithms, history matching fractured reservoirs is still challenging. The key... 详细信息
来源: 评论
Improved autoencoder Model With Memory Module for Anomaly Detection
收藏 引用
IEEE SENSORS JOURNAL 2024年 第8期24卷 12770-12781页
作者: Huang, Wei Liu, Zhen Jin, Xiaohang Xu, Jinshan Yao, Xinwei Zhejiang Univ Technol Coll Comp Sci Hangzhou 310023 Peoples R China Zhejiang Univ Technol Coll Mech Engn Hangzhou 310023 Peoples R China
As a commonly used model for anomaly detection, the autoencoder model for anomaly detection does not train the objective for extracted features, which is a downside of autoencoder model. In addition, it is well known ... 详细信息
来源: 评论