咨询与建议

限定检索结果

文献类型

  • 2,553 篇 期刊文献
  • 1,644 篇 会议
  • 44 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,244 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,895 篇 工学
    • 2,430 篇 计算机科学与技术...
    • 1,574 篇 电气工程
    • 678 篇 信息与通信工程
    • 413 篇 控制科学与工程
    • 376 篇 软件工程
    • 264 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 65 篇 材料科学与工程(可...
    • 62 篇 土木工程
    • 58 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 40 篇 生物工程
    • 34 篇 力学(可授工学、理...
  • 850 篇 理学
    • 283 篇 物理学
    • 243 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 123 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 18 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 11 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,244 篇 autoencoder
  • 1,034 篇 deep learning
  • 430 篇 anomaly detectio...
  • 363 篇 machine learning
  • 236 篇 feature extracti...
  • 153 篇 convolutional ne...
  • 152 篇 unsupervised lea...
  • 149 篇 neural network
  • 128 篇 neural networks
  • 109 篇 training
  • 107 篇 lstm
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 77 篇 transfer learnin...
  • 77 篇 decoding
  • 77 篇 deep neural netw...
  • 67 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...
  • 6 篇 tsinghua univ de...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,082 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4244 条 记 录,以下是4071-4080 订阅
排序:
A survey of deep neural network architectures and their applications
收藏 引用
NEUROCOMPUTING 2017年 234卷 11-26页
作者: Liu, Weibo Wang, Zidong Liu, Xiaohui Zeng, Nianyin Liu, Yurong Alsaadi, Fuad E. Brunel Univ London Dept Comp Sci Uxbridge U138 3PH Middx England Xiamen Univ Dept Instrumental & Elect Engn Xiamen 361005 Fujian Peoples R China Yangzhou Univ Dept Math Yangzhou 225002 Jiangsu Peoples R China King Abdulaziz Univ CSN Res Grp Fac Engn Jeddah 21589 Saudi Arabia
Since the proposal of a fast learning algorithm for deep belief networks in 2006, the deep learning techniques have drawn ever-increasing research interests because of their inherent capability of overcoming the drawb... 详细信息
来源: 评论
Multi-channel multi-model feature learning for face recognition
收藏 引用
PATTERN RECOGNITION LETTERS 2017年 85卷 79-83页
作者: Aslan, Melih S. Hailat, Zeyad Alafif, Tarik K. Chen, Xue-Wen Wayne State Univ Dept Comp Sci 5057 Woodward AveRm 3010 Detroit MI 48202 USA
Different modalities have been proved to carry various information. This paper aims to study how the multiple face regions/channels and multiple models (e.g., hand-crafted and unsupervised learning methods) answer to ... 详细信息
来源: 评论
Input Layer Regularization of Multilayer Feedforward Neural Networks
收藏 引用
IEEE ACCESS 2017年 5卷 10979-10985页
作者: Li, Feng Zurada, Jacek M. Liu, Yan Wu, Wei Dalian Univ Technol Sch Math Sci Dalian 116024 Peoples R China Univ Louisville Dept Elect & Comp Engn Louisville KY 40208 USA Univ Social Sci Informat Technol Inst PL-90113 Lodz Poland Dalian Polytech Univ Sch Informat Sci & Engn Dalian 116034 Peoples R China
Multilayer feedforward neural networks (MFNNs) have been widely used for classification or approximation of nonlinear mappings described by a data set consisting of input and output samples. In many MFNN applications,... 详细信息
来源: 评论
Supervised monaural source separation based on autoencoders
Supervised monaural source separation based on autoencoders
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Keiichi Osako Yuki Mitsufuji Rita Singh Bhiksha Raj Sony Corporation Minato-ku Tokyo Japan Carnegie Mellon University Pittsburgh PA USA
In this paper, we propose a new supervised monaural source separation based on autoencoders. We employ the autoencoder for the dictionary training such that the nonlinear network can encode the target source with high... 详细信息
来源: 评论
Face Verification via Learned Representation on Feature-Rich Video Frames
收藏 引用
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY 2017年 第7期12卷 1686-1698页
作者: Goswami, Gaurav Vatsa, Mayank Singh, Richa Indraprastha Inst Informat Technol Delhi Delhi 110020 India
Abundance and availability of video capture devices, such as mobile phones and surveillance cameras, have instigated research in video face recognition, which is highly pertinent in law enforcement applications. While... 详细信息
来源: 评论
Learning Multi-Modality Features for Scene Classification of High-Resolution Remote Sensing Images
收藏 引用
Journal of Computer and Communications 2018年 第11期6卷 185-193页
作者: Feng’an Zhao Xiongmei Zhang Xiaodong Mu Zhaoxiang Yi Zhou Yang Department of Computer Science and Technology Xi’an Research Institute of High-Tech Xi’an China
Scene classification of high-resolution remote sensing (HRRS) image is an important research topic and has been applied broadly in many fields. Deep learning method has shown its high potential to in this domain, owin... 详细信息
来源: 评论
Tunnel Effect in CNNs: Image Reconstruction From Max Switch Locations
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2017年 第3期24卷 254-258页
作者: Saint Andre, Matthieu de La Roche Rieger, Laura Hannemose, Morten Kim, Junmo Korea Adv Inst Sci & Technol Daejeon 34141 South Korea EFREI F-94800 Villejuif France Tech Univ Berlin D-10623 Berlin Germany Tech Univ Denmark DK-2800 Lyngby Denmark Korea Adv Inst Sci & Technol Sch Elect Engn Daejeon 34141 South Korea
In this letter, we show that reconstruction of an image passed through a neural network is possible, using only the locations of the max pool activations. This was demonstrated with an architecture consisting of an en... 详细信息
来源: 评论
Deep Neural Network based Place and Manner of Articulation Detection and Classification for Bengali Continuous Speech
收藏 引用
Procedia Computer Science 2018年 125卷 895-901页
作者: Tanmay Bhowmik Amitava Chowdhury Shyamal Kumar Das Mandal CET IIT Kharagpur Kharagpur-721302 India SCS University of Petroleum and Energy Studies Dehradun-248007 India
The phonological features are the most basic unit of a speech knowledge hierarchy. This paper reports about detection and classification of phonological features from Bengali continuous speech. The phonological featur... 详细信息
来源: 评论
Dimensionality reduction for protein secondary structure and solvent accesibility prediction
收藏 引用
JOURNAL OF BIOINFORMATICS AND COMPUTATIONAL BIOLOGY 2018年 第5期16卷 1850020页
作者: Aydin, Zafer Kaynar, Oguz Gormez, Yasin Abdullah Gul Univ Dept Comp Engn TR-38080 Kayseri Turkey Cumhuriyet Univ Dept Management Informat Syst TR-58000 Sivas Turkey
Secondary structure and solvent accessibility prediction provide valuable information for estimating the three dimensional structure of a protein. As new feature extraction methods are developed the dimensionality of ... 详细信息
来源: 评论
Community detection in complex networks using deep auto-encoded extreme learning machine
收藏 引用
MODERN PHYSICS LETTERS B 2018年 第16期32卷
作者: Wang, Feifan Zhang, Baihai Chai, Senchun Xia, Yuanqing Beijing Inst Technol Sch Automat 5 Zhongguancun South St Beijing 10081 Peoples R China
Community detection has long been a fascinating topic in complex networks since the community structure usually unveils valuable information of interest. The prevalence and evolution of deep learning and neural networ... 详细信息
来源: 评论