咨询与建议

限定检索结果

文献类型

  • 2,573 篇 期刊文献
  • 1,652 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,923 篇 工学
    • 2,443 篇 计算机科学与技术...
    • 1,582 篇 电气工程
    • 689 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 378 篇 软件工程
    • 265 篇 仪器科学与技术
    • 168 篇 生物医学工程(可授...
    • 163 篇 机械工程
    • 152 篇 测绘科学与技术
    • 141 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 73 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 69 篇 交通运输工程
    • 64 篇 土木工程
    • 59 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 44 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 865 篇 理学
    • 291 篇 物理学
    • 246 篇 生物学
    • 151 篇 化学
    • 137 篇 地球物理学
    • 126 篇 数学
  • 546 篇 医学
    • 345 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 86 篇 特种医学
  • 366 篇 管理学
    • 310 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,279 篇 autoencoder
  • 1,042 篇 deep learning
  • 432 篇 anomaly detectio...
  • 366 篇 machine learning
  • 239 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 153 篇 neural network
  • 153 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,103 篇 英文
  • 113 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 5 篇 法文
  • 4 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4279 条 记 录,以下是4221-4230 订阅
排序:
Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2015年 第8期53卷 4238-4249页
作者: Cheng, Gong Han, Junwei Guo, Lei Liu, Zhenbao Bu, Shuhui Ren, Jinchang Northwestern Polytech Univ Sch Automat Xian 710072 Peoples R China Northwestern Polytech Univ Sch Aeronaut Xian 710072 Peoples R China Univ Strathclyde Fac Engn Dept Elect & Elect Engn Glasgow G1 1XW Lanark Scotland
Land-use classification using remote sensing images covers a wide range of applications. With more detailed spatial and textural information provided in very high resolution (VHR) remote sensing images, a greater rang... 详细信息
来源: 评论
A Map-reduce Method for Training autoencoders on Xeon Phi
A Map-reduce Method for Training Autoencoders on Xeon Phi
收藏 引用
IEEE International Conference on Ubiquitous Computing and Communications
作者: Qiongjie Yao Xiaofei Liao Hai Jin Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan 430074 China
The stacked autoencoder is a deep learning model that consists of multiple autoencoders. This model has been widely applied in numerous machine learning applications. A significant amount of effort has been made to in... 详细信息
来源: 评论
A Continuous Learning Framework for Activity Recognition Using Deep Hybrid Feature Models
收藏 引用
IEEE TRANSACTIONS ON MULTIMEDIA 2015年 第11期17卷 1909-1922页
作者: Hasan, Mahmudul Roy-Chowdhury, Amit K. Univ Calif Riverside Dept Comp Sci & Engn Riverside CA 92521 USA Univ Calif Riverside Dept Elect & Comp Engn Riverside CA 92521 USA
Most of the research on human activity recognition has focused on learning a static model, considering that all the training instances are labeled and present in advance, while in streaming videos new instances contin... 详细信息
来源: 评论
Saliency-Guided Unsupervised Feature Learning for Scene Classification
收藏 引用
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 2015年 第4期53卷 2175-2184页
作者: Zhang, Fan Du, Bo Zhang, Liangpei Wuhan Univ State Key Lab Informat Engn Surveying Mapping & R Wuhan 430079 Peoples R China Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China
Due to the rapid technological development of various different satellite sensors, a huge volume of high-resolution image data sets can now be acquired. How to efficiently represent and recognize the scenes from such ... 详细信息
来源: 评论
Online Marginalized Linear Stacked Denoising autoencoders for Learning from Big Data Stream
Online Marginalized Linear Stacked Denoising Autoencoders fo...
收藏 引用
International Conference on Advanced Computer Science and Information Systems
作者: Arif Budiman Mohamad Ivan Fanany Chan Basaruddin Faculty of Computer Science University of Indonesia Depok West Java Indonesia
Big non-stationary data, which comes in gradual fashion or stream, is one important issue in the application of big data to train deep learning machines. In this paper, we focused on a unique variant of traditional au... 详细信息
来源: 评论
FACE IDENTIFICATION FROM LOW RESOLUTION NEAR-INFRARED IMAGES
FACE IDENTIFICATION FROM LOW RESOLUTION NEAR-INFRARED IMAGES
收藏 引用
IEEE International Conference on Image Processing
作者: Soumyadeep Ghosh Rohit Keshari Richa Singh Mayank Vatsa IIIT Delhi
Face identification from low quality and low resolution Near-Infrared (NIR) face images is a challenging problem. Since surveillance cameras typically acquire images at a large standoff distance, the effective resolut... 详细信息
来源: 评论
A Hybrid Malicious Code Detection Method based on Deep Learning
收藏 引用
INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS 2015年 第5期9卷 205-215页
作者: Li, Yuancheng Ma, Rong Jiao, Runhai North China Elect Power Univ Sch Control & Comp Engn Beijing Peoples R China
In this paper;we propose a hybrid malicious code detection scheme based on autoencoder and DBN (Deep Belief Networks). Firstly, we use the autoencoder deep learning method to reduce the dimensionality of data. This co... 详细信息
来源: 评论
Nonparametric guidance of autoencoder representations using label information
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine Learning Research 2012年 第1期13卷
作者: Jasper Snoek Ryan P. Adams Hugo Larochelle Department of Computer Science University of Toronto Toronto ON Canada School of Engineering and Applied Sciences Harvard University Cambridge MA Department of Computer Science University of Sherbrooke Sherbrooke QC Canada
While unsupervised learning has long been useful for density modeling, exploratory data analysis and visualization, it has become increasingly important for discovering features that will later be used for discriminat... 详细信息
来源: 评论
STOCHASTIC GRADIENT VARIATIONAL BAYES FOR DEEP LEARNING-BASED ASR
STOCHASTIC GRADIENT VARIATIONAL BAYES FOR DEEP LEARNING-BASE...
收藏 引用
IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU)
作者: Tjandra, Andros Sakti, Sakriani Nakamura, Satoshi Adriani, Mirna Univ Indonesia Fac Comp Sci Java Indonesia Nara Inst Sci & Technol Grad Sch Informat Sci Ikoma Nara Japan
Many successful methods for training deep neural networks (DNN) rely on an unsupervised pretraining algorithm. It is particularly effective when the number of labeled training samples is not large enough, because pret... 详细信息
来源: 评论
Memristor Crossbar Based Unsupervised Training
Memristor Crossbar Based Unsupervised Training
收藏 引用
IEEE National Aerospace and Electronics Conference (NAECON)
作者: Hasan, Raqibul Taha, Tarek M. Univ Dayton Dept Elect & Comp Engn Dayton OH 45469 USA
Several big data applications are particularly focused on classification and clustering tasks. Robustness of such system depends on how well it can extract important features from the raw data. For big data processing... 详细信息
来源: 评论