咨询与建议

限定检索结果

文献类型

  • 2,573 篇 期刊文献
  • 1,652 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,923 篇 工学
    • 2,443 篇 计算机科学与技术...
    • 1,582 篇 电气工程
    • 689 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 378 篇 软件工程
    • 265 篇 仪器科学与技术
    • 168 篇 生物医学工程(可授...
    • 163 篇 机械工程
    • 152 篇 测绘科学与技术
    • 141 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 73 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 69 篇 交通运输工程
    • 64 篇 土木工程
    • 59 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 44 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 865 篇 理学
    • 291 篇 物理学
    • 246 篇 生物学
    • 151 篇 化学
    • 137 篇 地球物理学
    • 126 篇 数学
  • 546 篇 医学
    • 345 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 86 篇 特种医学
  • 366 篇 管理学
    • 310 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,279 篇 autoencoder
  • 1,042 篇 deep learning
  • 432 篇 anomaly detectio...
  • 366 篇 machine learning
  • 239 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 153 篇 neural network
  • 153 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,103 篇 英文
  • 113 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 5 篇 法文
  • 4 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4279 条 记 录,以下是4241-4250 订阅
Feature Ensemble Learning based on Sparse autoencoders for Image Classification
Feature Ensemble Learning based on Sparse Autoencoders for I...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Lu, Yaping Zhang, Li Wang, Bangjun Yang, Jiwen Suzhou Univ Sch Comp Sci & Technol Suzhou 215006 Jiangsu Peoples R China Suzhou Univ Prov Key Lab Comp Informat Proc Technol Suzhou 215006 Jiangsu Peoples R China
Deep networks are well known for their powerful function approximations. To train a deep network efficiently, greedy layer-wise pre-training and fine tuning are required. Typically, pre-training, aiming to initialize ... 详细信息
来源: 评论
R~2FP: Rich and Robust Feature Pooling for Mining Visual Data
R~2FP: Rich and Robust Feature Pooling for Mining Visual Dat...
收藏 引用
IEEE International Conference on Data Mining
作者: Wei Xiong Bo Du Lefei Zhang Ruimin Hu Wei Bian Jialie Shen Dacheng Tao School of Computer Science Wuhan University National Engineering Research Center for MultimediaSoftware Luojiashan Centre for Quantum Computation & Intelligent Systems University of Technology School of Information Systems Singapore Management University
The human visual system proves smart in extracting both global and local features. Can we design a similar way for unsupervised feature learning? In this paper, we propose a novel pooling method within an unsupervised... 详细信息
来源: 评论
Speech Separation based on Deep Belief Network
Speech Separation based on Deep Belief Network
收藏 引用
2015 International Industrial Informatics and Computer Engineering Conference(IIICEC 2015)
作者: Wu Haijia Zhang Xiongwei Zhang Liangliang Zou Xia College of Command Information and Systems PLA University of Science and Technology
Thanks to its hierarchical and generative nature,Deep Belief Network(DBN) is effective to feature representation and extraction in signal *** this paper,DBN is investigated and implemented to monaural speech ***,two... 详细信息
来源: 评论
A Novel Method Based on Data Visual Autoencoding for Time-Series Classification
A Novel Method Based on Data Visual Autoencoding for Time-Se...
收藏 引用
2015年中国智能自动化学术会议
作者: Chen Qian Yan Wang Lei Guo School of Automation Science and Electrical Engineering Beihang University
A variety of techniques based on numerical characteristics are currently presented for mining time-series data. However, we find that time-series data generally contain curves sharing some set of visual characteristic... 详细信息
来源: 评论
INCORPORATING IMAGE DEGENERATION MODELING WITH MULTITASK LEARNING FOR IMAGE SUPER-RESOLUTION
INCORPORATING IMAGE DEGENERATION MODELING WITH MULTITASK LEA...
收藏 引用
IEEE International Conference on Image Processing
作者: Yudong Liang Jinjun Wang Shizhou Zhang Yihong Gong Xi'an Jiaotong University Institute of Artificial Intelligence and Robotics
Learning the non-linear image upscaling process has previously been considered as a simple regression process, where various models have been utilized to describe the correlations between high-resolution (HR) and low-... 详细信息
来源: 评论
高光谱图像的数据压缩与分类算法研究
高光谱图像的数据压缩与分类算法研究
收藏 引用
作者: 郭智 西安电子科技大学
学位级别:硕士
高光谱图像是一种特征维度大、像素点众多的图像数据集,目前对其主要研究工作包括了特征选择、特征提取、模式分类等等。由于高光谱图像的数据量较为庞大且存在冗余信息,因此对数据的特征学习与挖掘有效数据点是图像处理的关键。目前主... 详细信息
来源: 评论
Feature Ensemble Learning based on Sparse autoencoders for Image Classification
Feature Ensemble Learning based on Sparse Autoencoders for I...
收藏 引用
International Joint Conference on Neural Networks
作者: Yaping Lu Li Zhang Bangjun Wang Jiwen Yang School of Computer Science and Technology & Provincial Key Laboratory for Computer Information Processing Technology Soochow University
Deep networks are well known for their powerful function approximations. To train a deep network efficiently, greedy layer-wise pre-training and fine tuning are required. Typically, pre-training, aiming to initialize ... 详细信息
来源: 评论
Construction and Reduction Methods of Vulnerability Index System in Power SCADA
收藏 引用
INTERNATIONAL JOURNAL OF SECURITY AND ITS APPLICATIONS 2014年 第6期8卷 335-352页
作者: Li, Yuancheng Chu, Shengnan North China Elect Power Univ Sch Control & Comp Engn Beijing Peoples R China
Electric power SCADA (Supervisory Control and Data Acquisition) system gradually transforming from a separate private network to an open public network, seriously increases the vulnerability risk in electric power SCA... 详细信息
来源: 评论
VOICE CONVERSION USING DEEP NEURAL NETWORKS WITH SPEAKER-INDEPENDENT PRE-TRAINING
VOICE CONVERSION USING DEEP NEURAL NETWORKS WITH SPEAKER-IND...
收藏 引用
IEEE Workshop on Spoken Language Technology (SLT 2014)
作者: Mohammadi, Seyed Hamidreza Kain, Alexander Oregon Hlth & Sci Univ Ctr Spoken Language Understanding Portland OR 97201 USA
In this study, we trained a deep autoencoder to build compact representations of short-term spectra of multiple speakers. Using this compact representation as mapping features, we then trained an artificial neural net... 详细信息
来源: 评论
Modeling Video Dynamics with Deep Dynencoder
收藏 引用
13th European Conference on Computer Vision (ECCV)
作者: Yan, Xing Chang, Hong Shan, Shiguang Chen, Xilin Chinese Acad Sci Inst Comp Technol Key Lab Intelligent Informat Proc Beijing 100190 Peoples R China
Videos always exhibit various pattern motions, which can be modeled according to dynamics between adjacent frames. Previous methods based on linear dynamic system can model dynamic textures but have limited capacity o... 详细信息
来源: 评论