咨询与建议

限定检索结果

文献类型

  • 2,553 篇 期刊文献
  • 1,644 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,251 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,897 篇 工学
    • 2,430 篇 计算机科学与技术...
    • 1,574 篇 电气工程
    • 679 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 376 篇 软件工程
    • 265 篇 仪器科学与技术
    • 164 篇 生物医学工程(可授...
    • 161 篇 机械工程
    • 151 篇 测绘科学与技术
    • 139 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 71 篇 动力工程及工程热...
    • 69 篇 交通运输工程
    • 65 篇 材料科学与工程(可...
    • 64 篇 土木工程
    • 59 篇 网络空间安全
    • 58 篇 化学工程与技术
    • 40 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 853 篇 理学
    • 284 篇 物理学
    • 245 篇 生物学
    • 148 篇 化学
    • 137 篇 地球物理学
    • 124 篇 数学
  • 542 篇 医学
    • 342 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 83 篇 特种医学
  • 365 篇 管理学
    • 309 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 18 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,251 篇 autoencoder
  • 1,035 篇 deep learning
  • 430 篇 anomaly detectio...
  • 364 篇 machine learning
  • 236 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 152 篇 neural network
  • 152 篇 unsupervised lea...
  • 129 篇 neural networks
  • 108 篇 lstm
  • 107 篇 training
  • 105 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 77 篇 transfer learnin...
  • 77 篇 decoding
  • 77 篇 deep neural netw...
  • 67 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,087 篇 英文
  • 101 篇 其他
  • 34 篇 中文
  • 7 篇 法文
  • 6 篇 德文
  • 6 篇 土耳其文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4251 条 记 录,以下是481-490 订阅
排序:
Fermentation process quality prediction using teacher student stacked sparse recurrent autoencoder
收藏 引用
CANADIAN JOURNAL OF CHEMICAL ENGINEERING 2022年 第10期100卷 2907-2917页
作者: Gao, Xuejin Meng, Lingjun Gao, Huihui Han, Huayun Qi, Yongsheng Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Minist Educ Engn Res Ctr Digital Community Beijing 100124 Peoples R China Beijing Lab Urban Mass Transit Beijing 100124 Peoples R China Beijing Key Lab Computat Intelligence & Intellige Beijing 100124 Peoples R China Inner Mongolia Univ Technol Sch Elect Power Hohhot Peoples R China
For predicting the value of the quality variable in fermentation processes, traditional data-driven methods do not use information in large amounts of unlabelled data. To solve this data-rich but information-poor (DRI... 详细信息
来源: 评论
Scalable Discrete Matrix Factorization and Semantic autoencoder for Cross-Media Retrieval
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2022年 第7期52卷 5947-5960页
作者: Zhang, Donglin Wu, Xiao-Jun Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi 214122 Jiangsu Peoples R China Jiangnan Univ Jiangsu Prov Engn Lab Pattern Recognit & Computat Wuxi 214122 Jiangsu Peoples R China
Hashing methods have sparked great attention on multimedia tasks due to their effectiveness and efficiency. However, most existing methods generate binary codes by relaxing the binary constraints, which may cause larg... 详细信息
来源: 评论
Learning Stretch-Shrink Latent Representations With autoencoder and K-Means for Software Defect Prediction
收藏 引用
IEEE ACCESS 2022年 10卷 117827-117835页
作者: Phan, Viet Anh Le Quy Don Tech Univ Fac Informat Technol Dept Informat Secur Hanoi 100000 Vietnam
Detecting defective source code to localize and fix bugs is important to reduce software development efforts. Although deep learning models have made a breakthrough in this field, many issues have not been resolved, s... 详细信息
来源: 评论
User-centric hybrid semi-autoencoder recommendation system
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第16期81卷 23091-23104页
作者: Tewari, Anand Shanker Parhi, Ityendu Al-Turjman, Fadi Abhishek, Kumar Ghalib, Muhummad Rukunuddin Shankar, Achyut NIT Patna CSE Dept Patna Bihar India Near East Univ Dept Artificial Intelligence Engn Res Ctr AI & IoT Mersin 10 Nicosia Turkey Vellore Inst Technol Sch Comp Sci & Engn Vellore Tamil Nadu India Amity Univ Amity Sch Engn & Technol Dept CSE Noida India
Recommendation System is one of such solutions to overcome information overload issues and to identify products most relevant to users and provide suggestions to users for items they might be interested in consuming o... 详细信息
来源: 评论
Short-Term Load Forecasting Method Based on autoencoder and LSTNet Models  4
Short-Term Load Forecasting Method Based on Autoencoder and ...
收藏 引用
4th IEEE International Conference on Power, Electronics and Computer Applications, ICPECA 2024
作者: Ding, Yi Pang, Chao Wei, Liyong Wang, En Zhao, Chenyang Gao, Qi Bian, Wenyu Li, Boyang State Grid Tianjin Electric Power Research Institute North China Electric Power University Tianjin China State Grid Tianjin Electric Power Research Institute Tianjin China State Grid Tianjin Integrated Energy Services Limited Company Tianjin China State Grid Tianjin Electric Power Company Tianjin China North China Electric Power University Beijing China
The accuracy of load forecasting is very important to the safe and economical operation of power system. This paper presents a LSTNet model based on autoencoder feature extraction for load time series prediction. In t... 详细信息
来源: 评论
autoencoder Feature Residuals for Network Intrusion Detection: Unsupervised Pre-training for Improved Performance  21
Autoencoder Feature Residuals for Network Intrusion Detectio...
收藏 引用
21st IEEE International Conference on Machine Learning and Applications (IEEE ICMLA)
作者: Lewandowski, Brian Paffenroth, Randy Worcester Polytech Inst Comp Sci Worcester MA 01609 USA Worcester Polytech Inst Data Sci Math Sci & Comp Sci Worcester MA 01609 USA
Network intrusion detection is a constantly evolving field as researchers and practitioners work towards keeping up with novel attacks and growing amounts of network data. To aid in this challenge researchers have bee... 详细信息
来源: 评论
autoencoder ensembles for network intrusion detection  24
Autoencoder ensembles for network intrusion detection
收藏 引用
24th International Conference on Advanced Communication Technology (ICACT) - Artificial Intelligence Technologies toward Cybersecurity
作者: Long, Chun Xiao, JianPing Wei, Jinxia Zhao, Jing Wan, Wei Du, Guanyao CAS Chinese Acad Sci Comp Network Informat Ctr Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China
Machine learning methods have been widely used in the field of intrusion detection. However, most methods require labeled data sets, and the overhead is very high. Network data is often high-dimensional and has the pr... 详细信息
来源: 评论
autoencoder and Deep Neural Network based Energy Consumption Analysis of Marine Diesel Engine  19
Autoencoder and Deep Neural Network based Energy Consumption...
收藏 引用
19th IEEE International Conference on Mechatronics and Automation (IEEE ICMA)
作者: Zhang, Deft Wang, Kangli Gao, Jianfeng Che, Xiuming Tianjin Univ Technol Maritime Coll Tianjin Peoples R China Northern Nav Serv Ctr Tianjin AtoN Div Tianjin Peoples R China
In order to improve the intelligent energy efficiency management of ships, evaluate the fuel utilization efficiency of marine diesel engine. In this paper, a fuel consumption model of marine diesel engine based on aut... 详细信息
来源: 评论
AutoSeqRec: autoencoder for Efficient Sequential Recommendation  23
AutoSeqRec: Autoencoder for Efficient Sequential Recommendat...
收藏 引用
32nd ACM International Conference on Information and Knowledge Management (CIKM)
作者: Liu, Sijia Liu, Jiahao Gu, Hansu Li, Dongsheng Lu, Tun Zhang, Peng Gu, Ning Fudan Univ Shanghai Peoples R China Microsoft Res Asia Shanghai Peoples R China
Sequential recommendation demonstrates the capability to recommend items by modeling the sequential behavior of users. Traditional methods typically treat users as sequences of items, overlooking the collaborative rel... 详细信息
来源: 评论
Combating Sensor Drift with an LSTM Neural Network Enhanced by autoencoder Preprocessing
Combating Sensor Drift with an LSTM Neural Network Enhanced ...
收藏 引用
IEEE Sensors Conference
作者: Wang, Junming Shu, Jing Li, Zheng Tong, Raymond Kai-Yu Chinese Univ Hong Kong Dept Biomed Engn Shatin Hong Kong Peoples R China Chinese Univ Hong Kong Dept Surg Shatin Hong Kong Peoples R China
This paper presents a novel approach to compensate for sensor long-term drift by combining an autoencoder with a long short-term neural network (LSTM). Specifically, an autoencoder is utilized to model the sensor'... 详细信息
来源: 评论