咨询与建议

限定检索结果

文献类型

  • 2,573 篇 期刊文献
  • 1,652 篇 会议
  • 51 篇 学位论文
  • 2 册 图书
  • 1 篇 资讯

馆藏范围

  • 4,279 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,923 篇 工学
    • 2,443 篇 计算机科学与技术...
    • 1,582 篇 电气工程
    • 689 篇 信息与通信工程
    • 414 篇 控制科学与工程
    • 378 篇 软件工程
    • 265 篇 仪器科学与技术
    • 168 篇 生物医学工程(可授...
    • 163 篇 机械工程
    • 152 篇 测绘科学与技术
    • 141 篇 电子科学与技术(可...
    • 93 篇 石油与天然气工程
    • 76 篇 环境科学与工程(可...
    • 73 篇 动力工程及工程热...
    • 70 篇 材料科学与工程(可...
    • 69 篇 交通运输工程
    • 64 篇 土木工程
    • 59 篇 化学工程与技术
    • 58 篇 网络空间安全
    • 44 篇 生物工程
    • 35 篇 力学(可授工学、理...
  • 865 篇 理学
    • 291 篇 物理学
    • 246 篇 生物学
    • 151 篇 化学
    • 137 篇 地球物理学
    • 126 篇 数学
  • 546 篇 医学
    • 345 篇 临床医学
    • 123 篇 基础医学(可授医学...
    • 86 篇 特种医学
  • 366 篇 管理学
    • 310 篇 管理科学与工程(可...
    • 36 篇 图书情报与档案管...
  • 74 篇 农学
  • 21 篇 经济学
  • 19 篇 法学
  • 14 篇 艺术学
  • 13 篇 文学
  • 12 篇 教育学
  • 3 篇 哲学
  • 1 篇 军事学

主题

  • 4,279 篇 autoencoder
  • 1,042 篇 deep learning
  • 432 篇 anomaly detectio...
  • 366 篇 machine learning
  • 239 篇 feature extracti...
  • 154 篇 convolutional ne...
  • 153 篇 neural network
  • 153 篇 unsupervised lea...
  • 129 篇 neural networks
  • 109 篇 training
  • 108 篇 lstm
  • 106 篇 classification
  • 103 篇 dimensionality r...
  • 82 篇 cnn
  • 79 篇 representation l...
  • 79 篇 clustering
  • 78 篇 decoding
  • 77 篇 transfer learnin...
  • 77 篇 deep neural netw...
  • 68 篇 convolutional ne...

机构

  • 16 篇 univ chinese aca...
  • 10 篇 cent south univ ...
  • 10 篇 univ elect sci &...
  • 9 篇 chongqing univ c...
  • 9 篇 univ chinese aca...
  • 9 篇 northwestern pol...
  • 9 篇 iiit delhi new d...
  • 9 篇 nanyang technol ...
  • 8 篇 hong kong polyte...
  • 8 篇 cent south univ ...
  • 8 篇 tianjin univ col...
  • 8 篇 univ elect sci &...
  • 8 篇 korea adv inst s...
  • 8 篇 peng cheng lab p...
  • 7 篇 china univ geosc...
  • 7 篇 chinese acad sci...
  • 7 篇 harbin engn univ...
  • 7 篇 brno university ...
  • 6 篇 queens univ dept...
  • 6 篇 new jersey inst ...

作者

  • 20 篇 majumdar angshul
  • 13 篇 wang wei
  • 7 篇 zhang lin
  • 7 篇 zhang lei
  • 7 篇 wang jian
  • 7 篇 wang hao
  • 7 篇 liu li
  • 7 篇 li bin
  • 7 篇 kim jin-young
  • 7 篇 hoydis jakob
  • 7 篇 chen wei
  • 7 篇 cho sung-bae
  • 7 篇 gao lianru
  • 7 篇 zhang wei
  • 7 篇 guo lei
  • 6 篇 wang lei
  • 6 篇 li li
  • 6 篇 wang kai
  • 6 篇 li yuan
  • 6 篇 liu jie

语言

  • 4,103 篇 英文
  • 113 篇 其他
  • 34 篇 中文
  • 6 篇 土耳其文
  • 5 篇 法文
  • 4 篇 德文
  • 2 篇 朝鲜文
  • 1 篇 西班牙文
  • 1 篇 意大利文
  • 1 篇 日文
  • 1 篇 葡萄牙文
检索条件"主题词=autoencoder"
4279 条 记 录,以下是761-770 订阅
排序:
Deep Convolutional autoencoder Architecture for Predictive Maintenance Applications  30
Deep Convolutional Autoencoder Architecture for Predictive M...
收藏 引用
30th IEEE Signal Processing and Communications Applications Conference (SIU)
作者: Catak, Yigit Sahin, Kerem Gunye, Osman Berke Ozkan, Huseyin Sabanci Univ Muhendislik & Doga Bilimleri Fak Istanbul Turkey Cozum Makina AR GE Dept Istanbul Turkey
Maintenance of the machinery is a crucial task in industrial production sectors working with machinery. The most important aspect of maintenance is timing. Executing maintenances more frequently or sparsely than the n... 详细信息
来源: 评论
Time-frequency enhanced characterization method based on asymmetric image reconstruction autoencoder
收藏 引用
MEASUREMENT SCIENCE AND TECHNOLOGY 2024年 第3期35卷 035107-035107页
作者: Han, Ruiyu Mao, Zhiwei Zhang, Zhenjing Zhang, Jinjie Beijing Univ Chem Technol Key Lab Engine Hlth Monitoring Control & Networkin Minist Educ Beijing 100029 Peoples R China Beijing Univ Chem Technol State Key Lab High End Compressor & Syst Technol Beijing 100029 Peoples R China Weichai Power Co Ltd Weifang Peoples R China
The vibration signals of mechanical equipment are subject to the influence of complex and variable working conditions, often exhibiting non-smooth and non-linear characteristics. The conventional time-frequency (TF) a... 详细信息
来源: 评论
A Novel CNN-based autoencoder with Channel Feedback for Intelligent Maritime Communications
A Novel CNN-based Autoencoder with Channel Feedback for Inte...
收藏 引用
IEEE/CIC International Conference on Communications in China (ICCC)
作者: Lin, Bin Han, Xiaoling Wu, Nan Li, Jiaye Wang, Haocheng Shao, Shuai Dalian Maritime Univ Informat Sci & Technol Dalian Peoples R China
Driven by the rapid growth of maritime business, the research of reliable maritime communications has attracted great attention from both academic and industry. This paper proposes a novel convolutional neural network... 详细信息
来源: 评论
Recreating Fingerprint Images by Convolutional Neural Network autoencoder Architecture
收藏 引用
IEEE ACCESS 2021年 9卷 147888-147899页
作者: Saponara, Sergio Elhanashi, Abdussalam Zheng, Qinghe Univ Pisa Dipartimento Ingn Informaz I-56126 Pisa Italy Shandong Univ Sch Informat Sci & Engn Jinan 250100 Peoples R China
Fingerprint recognition systems have been applied widely to adopt accurate and reliable biometric identification between individuals. Deep learning, especially Convolutional Neural Network (CNN) has made a tremendous ... 详细信息
来源: 评论
Deep autoencoder-based community detection in complex networks with particle swarm optimization and continuation algorithms
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2021年 第3期40卷 4517-4533页
作者: Al-Andoli, Mohammed Cheah, Wooi Ping Tan, Shing Chiang Multimedia Univ Fac Informat Sci & Technol Jalan Ayer Keroh Lama Melaka 75450 Melaka Malaysia Univ Nottingham Ningbo China Fac Sci & Engn Sch Comp Sci Ningbo Peoples R China
Detecting communities is an important multidisciplinary research discipline and is considered vital to understand the structure of complex networks. Deep autoencoders have been successfully proposed to solve the probl... 详细信息
来源: 评论
Improved autoencoder for unsupervised anomaly detection
收藏 引用
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS 2021年 第12期36卷 7103-7125页
作者: Cheng, Zhen Wang, Siwei Zhang, Pei Wang, Siqi Liu, Xinwang Zhu, En Natl Univ Def Technol Sch Comp 109 Deya Rd Changsha 410073 Hunan Peoples R China
Deep autoencoder-based methods are the majority of deep anomaly detection. An autoencoder learning on training data is assumed to produce higher reconstruction error for the anomalous samples than the normal samples a... 详细信息
来源: 评论
Deep learning-driven pavement crack analysis: autoencoder-enhanced crack feature extraction and structure classification
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2024年 132卷
作者: Zhang, Miaomiao Zhong, Jingtao Zhou, Changhong Jia, Xiaoyang Zhu, Xingyi Huang, Baoshan Univ Tennessee Dept Civil & Environm Engn Knoxville TN 37996 USA Guilin Univ Elect Technol Sch Architecture & Transportat Engn Guilin 541004 Guangxi Peoples R China Tennessee Dept Transportat Nashville TN 37243 USA Tongji Univ Coll Transportat Engn Dept Rd & Airport Engn Shanghai 201804 Peoples R China
In practice, some asphalt pavements may exhibit significant cracking despite being structurally sound, or conversely, minimal cracking while having structural weaknesses. This inconsistency could be attributed to the ... 详细信息
来源: 评论
A residual autoencoder-based transformer for fault detection of multivariate processes
收藏 引用
APPLIED SOFT COMPUTING 2024年 163卷
作者: Shang, Jilin Yu, Jianbo Tongji Univ Sch Mech Engn Shanghai 201804 Peoples R China
The complexity of high-dimensional and noisy process signals reduces the effectiveness of conventional fault detection methods in industrial processes. Based on the hypothesis that data collected from normal and fault... 详细信息
来源: 评论
An autoencoder-based reduced-order model for eigenvalue problems with application to neutron diffusion
收藏 引用
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING 2021年 第15期122卷 3780-3811页
作者: Phillips, Toby R. F. Heaney, Claire E. Smith, Paul N. Pain, Christopher C. Imperial Coll London Dept Earth Sci & Engn Appl Modelling & Computat Grp London England Jacobs Poundbury England
Using an autoencoder for dimensionality reduction, this article presents a novel projection-based reduced-order model for eigenvalue problems. Reduced-order modeling relies on finding suitable basis functions which de... 详细信息
来源: 评论
TransCNN-HAE: Transformer-CNN Hybrid autoencoder for Blind Image Inpainting  22
TransCNN-HAE: Transformer-CNN Hybrid AutoEncoder for Blind I...
收藏 引用
30th ACM International Conference on Multimedia (MM)
作者: Zhao, Haoru Gu, Zhaorui Zheng, Bing Zheng, Haiyong Ocean Univ China Intelligent Informat Sensing & Proc Lab Qingdao Peoples R China Ocean Univ China Coll Elect Engn Qingdao Peoples R China Ocean Univ China Sanya Oceanog Inst Qingdao Peoples R China
Blind image inpainting is extremely challenging due to the unknown and multi-property complexity of contamination in different contaminated images. Current mainstream work decomposes blind image inpainting into two st... 详细信息
来源: 评论