The leaves of plants have rich information in recognition of plants. In general, agriculture experts accomplish information extraction from the leaves. Since the leaves contain useful features for recognising various ...
详细信息
The leaves of plants have rich information in recognition of plants. In general, agriculture experts accomplish information extraction from the leaves. Since the leaves contain useful features for recognising various types of plants, so these features can be extracted and applied by automatic image recognition algorithms to classify plant species. In this study, the authors investigate a novel approach for recognition of plant species using GIST texture features. Then, the principal and suitable features are selected by principal component analysis (PCA) algorithm. In the classification step, three different approaches such as Patternnet neural network, support vector machine, and K-nearest neighbour (KNN) algorithms were applied to the extracted features. For evaluation of the authors' approach, they applied their proposed algorithm on three famous datasets. In comparison to some widely used features, the results show that their approach outperforms the other methods in the case of the time and the accuracy. The best results were achieved by applying PCA algorithm to GIST feature vector and using the Cosine KNN classifier.
暂无评论