咨询与建议

限定检索结果

文献类型

  • 180 篇 期刊文献
  • 102 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 285 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 244 篇 工学
    • 147 篇 计算机科学与技术...
    • 85 篇 电气工程
    • 33 篇 控制科学与工程
    • 20 篇 信息与通信工程
    • 18 篇 软件工程
    • 13 篇 材料科学与工程(可...
    • 13 篇 电子科学与技术(可...
    • 12 篇 环境科学与工程(可...
    • 10 篇 石油与天然气工程
    • 9 篇 土木工程
    • 8 篇 机械工程
    • 8 篇 仪器科学与技术
    • 6 篇 水利工程
    • 5 篇 化学工程与技术
    • 4 篇 动力工程及工程热...
    • 4 篇 交通运输工程
    • 3 篇 测绘科学与技术
    • 3 篇 核科学与技术
  • 54 篇 理学
    • 16 篇 数学
    • 12 篇 物理学
    • 9 篇 生物学
    • 7 篇 统计学(可授理学、...
    • 5 篇 化学
    • 4 篇 地球物理学
    • 3 篇 系统科学
    • 3 篇 生态学
  • 32 篇 管理学
    • 32 篇 管理科学与工程(可...
  • 18 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
  • 4 篇 经济学
    • 4 篇 应用经济学
  • 4 篇 农学

主题

  • 285 篇 backpropagation ...
  • 48 篇 neural network
  • 36 篇 neural networks
  • 34 篇 artificial neura...
  • 33 篇 artificial neura...
  • 16 篇 multilayer perce...
  • 12 篇 backpropagation
  • 10 篇 classification
  • 9 篇 deep learning
  • 8 篇 pattern recognit...
  • 8 篇 particle swarm o...
  • 7 篇 ann
  • 7 篇 machine learning
  • 6 篇 neural nets
  • 6 篇 genetic algorith...
  • 6 篇 multilayer perce...
  • 5 篇 decision boundar...
  • 5 篇 system identific...
  • 5 篇 on-line learning
  • 5 篇 prediction

机构

  • 4 篇 tijuana inst tec...
  • 2 篇 dept. of compute...
  • 2 篇 himeji inst tech...
  • 2 篇 department of te...
  • 2 篇 kiet dept elect ...
  • 2 篇 indian stat inst...
  • 2 篇 tech univ madrid...
  • 2 篇 raajdhani engn c...
  • 2 篇 directorate of p...
  • 2 篇 natl univ singap...
  • 2 篇 brno university ...
  • 2 篇 pakistan electri...
  • 2 篇 univ aizu dept c...
  • 2 篇 yildiz tech univ...
  • 2 篇 andhra univ coll...
  • 2 篇 bengal engn & sc...
  • 2 篇 fdn fulgor ra-50...
  • 1 篇 worcester polyte...
  • 1 篇 univ milan dept ...
  • 1 篇 zagazig univ fac...

作者

  • 4 篇 gaxiola fernando
  • 4 篇 melin patricia
  • 4 篇 valdez fevrier
  • 3 篇 tanaka h
  • 3 篇 park ys
  • 3 篇 al-andoli mohamm...
  • 3 篇 ishibuchi h
  • 3 篇 castillo oscar
  • 3 篇 zhao qiangfu
  • 3 篇 kaneda yuya
  • 3 篇 liu yong
  • 3 篇 tan shing chiang
  • 2 篇 hueda mario r.
  • 2 篇 qiangfu zhao
  • 2 篇 goh pey yun
  • 2 篇 lek s
  • 2 篇 xie yuquan
  • 2 篇 ollé tamás
  • 2 篇 sivatte-adroer m...
  • 2 篇 hata y

语言

  • 263 篇 英文
  • 19 篇 其他
  • 2 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"主题词=backpropagation algorithm"
285 条 记 录,以下是161-170 订阅
排序:
Why neural networks apply to scientific computing?
收藏 引用
Theoretical & Applied Mechanics Letters 2021年 第3期11卷 125-129页
作者: Shaoqiang Tang Yang Yang HEDPS and LTCS College of EngineeringPeking UniversityBeijing 100871China
In recent years,neural networks have become an increasingly powerful tool in scientific *** universal approximation theorem asserts that a neural network may be constructed to approximate any given continuous function... 详细信息
来源: 评论
Modified Nonlinear Neural Network Forecasting Models on Malaysian Sand Costs Indices
Modified Nonlinear Neural Network Forecasting Models on Mala...
收藏 引用
IEEE Symposium on Computer Applications and Industrial Electronics (ISCAIE)
作者: Kamaruddin, Saadi Bin Ahmad Ghani, Nor Azura Md Ramli, Norazan Mohamed Int Islamic Univ Computat & Theoret Sci Dept Kuala Lumpur Malaysia Univ Teknol MARA Fac Comp & Math Sci Ctr Stat & Decis Sci Studies Shah Alam 40450 Selangor Darul Malaysia
Artificial Neural Networks (ANNs) have been adapted actively in the time series-prediction arena, but the presence of outliers that usually occur in the time series data may pollute the network training data. This is ... 详细信息
来源: 评论
Exploring the non-linearity in empirical modelling of a steel system using statistical and neural network models
Exploring the non-linearity in empirical modelling of a stee...
收藏 引用
3rd International Conference on Modeling and Analysis of Semiconductor Manufacturing (MASM 2005)
作者: Das, Prasun Datta, Shubhabrata Indian Stat Inst SQC & OR Unit Kolkata 700108 India Bengal Engn & Sci Univ Sch Mat Sci & Engn Sibpur 711103 Howrah India
The relationship between the physical properties of metal is often very complex in nature with its chemistry and several other rolling parameters in operation. Non-linear regression models play a very important role i... 详细信息
来源: 评论
Comparative Analysis of Bayesian Regularization and Levenberg-Marquardt Training algorithm for Localization in Wireless Sensor Network
Comparative Analysis of Bayesian Regularization and Levenber...
收藏 引用
15th International Conference on Advanced Communications Technology (ICACT)
作者: Payal, Ashish Rai, C. S. Reddy, B. V. R. GGS Indraprastha Univ Univ Sch Informat & Commun Technol New Delhi India
Wireless sensor networks (WSNs) have many applications in the field of disaster management, military, healthcare and environmental monitoring. Capability of WSNs is further enhanced by the efficient localization algor... 详细信息
来源: 评论
Predicting Students Yearly Performance using Neural Network: A Case Study of BSMRSTU  5
Predicting Students Yearly Performance using Neural Network:...
收藏 引用
5th International Conference on Informatics, Electronics and Vision (ICIEV)
作者: Sikder, Md. Fahim Uddin, Md. Jamal Halder, Sajal Bangabandhu Sheikh Mujibur Rahman Sci & Technol U Dept Comp Sci & Engn Dhaka Bangladesh
Students academic performance is the reflection of both academic background and family support. This performance record is critical for the educational institution because they can learn from this to improve their qua... 详细信息
来源: 评论
Use of an artificial neural network to predict population dynamics of the forest-pest pine needle gall midge (Diptera: Cecidomyiida)
收藏 引用
ENVIRONMENTAL ENTOMOLOGY 2000年 第6期29卷 1208-1215页
作者: Chon, TS Park, YS Kim, JM Lee, BY Chung, YJ Kim, Y Pusan Natl Univ Dept Biol Pusan 609735 South Korea
The backpropagation algorithm in artificial neural networks was used to forecast dynamic data of a forest pest population of the pine needle gall midge, Thecodiplosis japonensis Uchida et Inouye, a serious pest in pin... 详细信息
来源: 评论
Exploring the non-linearity in empirical modelling of a steel system using statistical and neural network models
收藏 引用
INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH 2007年 第3期45卷 699-717页
作者: Das, Prasun Datta, Shubhabrata Indian Stat Inst SQC & OR Unit Kolkata 700108 India Bengal Engn & Sci Univ Sch Mat Sci & Engn Sibpur 711103 Howrah India
The relationship between the physical properties of metal is often very complex in nature with its chemistry and several other rolling parameters in operation. Non-linear regression models play a very important role i... 详细信息
来源: 评论
ARTIFICIAL NEURAL NETWORKS LEARNING IN ROC SPACE
ARTIFICIAL NEURAL NETWORKS LEARNING IN ROC SPACE
收藏 引用
1st International Joint Conference on Computational Intelligence
作者: Castro, Cristiano Leite Braga, Antonio Padua Univ Fed Lavras Dept Comp Sci Campus UnivCaixa Postal 3037 BR-37200000 Lavras Brazil Univ Fed Minas Gerais Dept Elect Engn BR-30161970 Belo Horizonte MG Brazil
In order to control the trade-off between sensitivity and specificity of MLP binary classifiers, we extended the backpropagation algorithm, in batch mode, to incorporate different misclassification costs via separatio... 详细信息
来源: 评论
A New Training Method For Solving The XOR Problem  5
A New Training Method For Solving The XOR Problem
收藏 引用
5th International Conference on Electrical Engineering - Boumerdes (ICEE-B)
作者: Ladjouzi, Samir Grouni, Said Kirat, Abderrahmen Soufi, Youcef Univ Bouira Dept Elect Engn Bouira Algeria Univ Boumerdes Dept Ind Maintenance Boumerdes Algeria Univ Tebessa Dept Elect Engn Tebessa Algeria
Training of Artificial Neural Networks (ANN) is an important step to make the network able to accomplish the desired task. This capacity of learning in such networks makes them applied in many applications as modeling... 详细信息
来源: 评论
Artificial Neural Network with Hyperbolic Tangent Activation Function to Improve the Accuracy of COCOMO II Model  2nd
Artificial Neural Network with Hyperbolic Tangent Activation...
收藏 引用
2nd International Conference on Soft Computing and Data Mining (SCDM)
作者: Alshalif, Sarah Abdulkarem Ibrahim, Noraini Herawan, Tutut Univ Tun Hussein Onn Malaysia Parit Raja 86400 Johor Malaysia Univ Malaya Kuala Lumpur 50603 Malaysia
In software engineering, Constructive Cost Model II (COCOMO II) is one of the most cited, famous and widely used model to estimate and predict some important features of the software project such as effort, cost, time... 详细信息
来源: 评论